ﻻ يوجد ملخص باللغة العربية
We study high-temperature magnetization transport in a many-body spin-1/2 chain with on-site quasiperiodic potential governed by the Fibonacci rule. In the absence of interactions it is known that the system is critical with the transport described by a continuously varying dynamical exponent (from ballistic to localized) as a function of the on-site potential strength. Upon introducing weak interactions, we find that an anomalous noninteracting dynamical exponent becomes diffusive for any potential strength. This is borne out by a boundary-driven Lindblad dynamics as well as unitary dynamics, with agreeing diffusion constants. This must be contrasted to random potential where transport is subdiffusive at such small interactions. Mean-field treatment of the dynamics for small U always slows down the non-interacting dynamics to subdiffusion, and is therefore unable to describe diffusion in an interacting quasiperiodic system. Finally, briefly exploring larger interactions we find a regime of interaction-induced subdiffusive dynamics, despite the on-site potential itself having no rare-regions.
Precise nature of MBL transitions in both random and quasiperiodic (QP) systems remains elusive so far. In particular, whether MBL transitions in QP and random systems belong to the same universality class or two distinct ones has not been decisively
We study the finite-energy density phase diagram of spinless fermions with attractive interactions in one dimension in the presence of uncorrelated diagonal disorder. Unlike the case of repulsive interactions, a delocalized Luttinger-liquid phase per
We present a fully analytical description of a many body localization (MBL) transition in a microscopically defined model. Its Hamiltonian is the sum of one- and two-body operators, where both contributions obey a maximum-entropy principle and have n
We examine the standard model of many-body localization (MBL), i.e., the disordered chain of interacting spinless fermions, by representing it as the network in the many-body (MB) basis of noninteracting localized Anderson states. By studying eigenst
We study the statistical and dynamical aspects of a translation-invariant Hamiltonian, without quench disorder, as an example of the manifestation of the phenomenon of many-body localization. This is characterized by the breakdown of thermalization a