ﻻ يوجد ملخص باللغة العربية
Single electrons can be conceived as the simplest quantum nodes in a quantum network. Between electrons, single photons can act as quantum channels to exchange quantum information. Despite this appealing picture, in conventional materials, it is extremely difficult to make individual electrons and photons coherently interact with each other at the visible-infrared wavelengths suitable for long-distance communication. Here we theoretically demonstrate that the self-confined single-electron structure in condensed helium-4 can be a fascinating candidate for single-electron quantum nodes. Each electron in helium forms a bubble of 1 to 2 nm radius and coherently interacts with mid-infrared photons. A parametrically amplified femtosecond laser can drive the electrons into any superposition between the ground and excited states. An electron inside a slot-waveguide cavity can strongly couple with cavity photons and exhibits vacuum Rabi oscillations. Two electrons in the cavity naturally generate entanglement through their respective coupling to the lossy cavity. The electron-in-helium system offers unique insight in understanding nonequilibrium quantum dynamics.
Defects in solids are in many ways analogous to trapped atoms or molecules. They can serve as long-lived quantum memories and efficient light-matter interfaces. As such, they are leading building blocks for long-distance quantum networks and distribu
We present a scheme for simulating relativistic quantum physics in circuit quantum electrodynamics. By using three classical microwave drives, we show that a superconducting qubit strongly-coupled to a resonator field mode can be used to simulate the
The system of electrons trapped in vacuum above the liquid helium surface displays the highest mobilities known in condensed matter physics. We provide a brief summary of the experimental and theoretical results obtained for this system. We then show
We introduce the concept of embedding quantum simulators, a paradigm allowing the efficient quantum computation of a class of bipartite and multipartite entanglement monotones. It consists in the suitable encoding of a simulated quantum dynamics in t
This book provides an introduction to the emerging field of quantum thermodynamics, with particular focus on its relation to quantum information and its implications for quantum computers and next generation quantum technologies. The text, aimed at g