ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft Temporal Switching of TL Parameters: Wave-field, Energy Balance, Applications

134   0   0.0 ( 0 )
 نشر من قبل Yakir Hadad Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-varying guiding structures introduce an additional degree of freedom, besides spatial-variation, that enables better control over the guided wave in a device. Periodically time-modulated structures which are usually considered enable wave control over narrowband signals. However, for ultrawideband short-pulse signals, time-variation in the form of temporal discontinuities is required. Such a setup has recently been proposed as a mean to overcome the Bode-Fano bound on impedance matching. While hard (abrupt) temporal discontinuities are relatively simple to analyze by employing continuity of magnetic flux and electric charge, soft (gradual) temporal switching of the guiding structure parameters is more challenging. This work explores the case of a short-pulse dynamics in a one-dimensional, metamaterial TL, medium with general smooth time-variation of its parameters. In this time-varying TL, wave-field solutions are obtained by a WKB approach which is more common in the context of gradual spatial variations. Using this methodology a leading order transmitted and reflected waves due to the time-variation are derived, followed by a discussion of the energy balance in such switched media. A canonical example of capacitor discharge into a long time-varied TL is given. These results may be used as analysis/synthesis tools for time-varying wave devices in electromagnetics and acoustics.



قيم البحث

اقرأ أيضاً

Impedance matching is one of the most important practice in wave engineering as it enables to maximize the power transfer from the signal source to the load in the wave system. Unfortunately, it is bounded by the Bode-Fano criterion that states, for any passive, linear and time-invariant matching network, a stringent tradeoff between the matching-bandwidth and efficiency; implying severe constraints on various electromagnetic and acoustic wave systems. Here, we propose a matching paradigm that overcome this issue by using a temporal switching of the parameters of a metamaterial-based transmission-line, thus revoking the time-invariance assumption underlying the Bode-Fano criterion. Using this scheme we show theoretically that an efficient wideband matching, beyond Bode-Fano bound, can be achieved for short-time pulses in challenging cases of very high contrast between the load and the generator impedances, and with significant load dispersion; situations common in e.g., small antennas matching, cloaking, with applications for ultra-wideband communication, high resolution imaging, and more.
We show scalable and complete suppression of the recently reported terahertz-pulse-induced switching between different resistance states of antiferromagnetic CuMnAs thin films by ultrafast gating. The gating functionality is achieved by an optically generated transiently conductive parallel channel in the semiconducting substrate underneath the metallic layer. The photocarrier lifetime determines the time scale of the suppression. As we do not observe a direct impact of the optical pulse on the state of CuMnAs, all observed effects are primarily mediated by the substrate. The sample region of suppressed resistance switching is given by the optical spot size, thereby making our scheme potentially applicable for transient low-power masking of structured areas with feature sizes of ~100 nm and even smaller.
Collagen is the key protein of connective tissue (i.e., skin, tendons and ligaments, cartilage, among others) accounting for 25% to 35% of the whole-body protein content, and entitled of conferring mechanical stability. This protein is also a fundame ntal building block of bone due to its excellent mechanical properties together with carbonated hydroxyapatite minerals. While the mechanical resilience and viscoelasticity have been studied both in vitro and in vivo from the molecule to tissue level, wave propagation properties and energy dissipation have not yet been deeply explored, in spite of being crucial to understand the vibration dynamics of collagenous structures (e.g., eardrum, cochlear membranes) upon impulsive loads. By using a bottom-up atomistic modelling approach, here we study a collagen peptide under two distinct impulsive displacement loads, including longitudinal and transversal inputs. Using a one-dimensional string model as a model system, we investigate the roles of hydration and load direction on wave propagation along the collagen peptide and the related energy dissipation. We find that wave transmission and energy-dissipation strongly depend on the loading direction. Also, the hydrated collagen peptide can dissipate five times more energy than dehydrated one. Our work suggests a distinct role of collagen in term of wave transmission of different tissues such as tendon and eardrum. This study can step towards understanding the mechanical behaviour of collagen upon transient loads, impact loading and fatigue, and designing biomimetic and bio-inspired materials to replace specific native tissues such as the tympanic membrane.
Perpendicular magnetic tunnel junctions (p-MTJs) switched utilizing bipolar electric fields have extensive applications in energy-efficient memory and logic devices. Voltage-controlled magnetic anisotropy linearly lowers the energy barrier of ferroma gnetic layer via electric field effect and efficiently switches p-MTJs only with a unipolar behavior. Here we demonstrate a bipolar electric field effect switching of 100-nm p-MTJs with a synthetic antiferromagnetic free layer through voltage-controlled exchange coupling (VCEC). The switching current density, ~1.1x10^5 A/cm^2, is one order of magnitude lower than that of the best-reported spin-transfer torque devices. Theoretical results suggest that electric field induces a ferromagnetic-antiferromagnetic exchange coupling transition of the synthetic antiferromagnetic free layer and generates a field-like interlayer exchange coupling torque, which cause the bidirectional magnetization switching of p-MTJs. A preliminary benchmarking simulation estimates that VCEC dissipates an order of magnitude lower writing energy compared to spin-transfer torque at the 15-nm technology node. These results could eliminate the major obstacle in the development of spin memory devices beyond their embedded applications.
We report on switching among three charge-density-wave phases - commensurate, nearly commensurate, incommensurate - and the high-temperature normal metallic phase in thin-film 1T-TaS2 devices induced by application of an in-plane electric field. The electric switching among all phases has been achieved over a wide temperature range, from 77 K to 400 K. The low-frequency electronic noise spectroscopy has been used as an effective tool for monitoring the transitions, particularly the switching from the incommensurate charge-density-wave phase to the normal metal phase. The noise spectral density exhibits sharp increases at the phase transition points, which correspond to the step-like changes in resistivity. Assignment of the phases is consistent with low-field resistivity measurements over the temperature range from 77 K to 600 K. Analysis of the experimental data and calculations of heat dissipation suggest that Joule heating plays a dominant role in the electric-field induced transitions in the tested 1T-TaS2 devices on Si/SiO2 substrates. The possibility of electrical switching among four different phases of 1T-TaS2 is a promising step toward nanoscale device applications. The results also demonstrate the potential of noise spectroscopy for investigating and identifying phase transitions in materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا