ﻻ يوجد ملخص باللغة العربية
We have investigated the toroidal analog of ellipsoidal shells of matter, which are of great significance in Astrophysics. The exact formula for the gravitational potential $Psi(R,Z)$ of a shell with a circular section at the pole of toroidal coordinates is first established. It depends on the mass of the shell, its main radius and axis-ratio $e$ (i.e. core-to-main radius ratio), and involves the product of the complete elliptic integrals of the first and second kinds. Next, we show that successive partial derivatives $partial^{n +m} Psi/partial_{R^n} partial_{Z^m}$ are also accessible by analytical means at that singular point, thereby enabling the expansion of the interior potential as a bivariate series. Then, we have generated approximations at orders $0$, $1$, $2$ and $3$, corresponding to increasing accuracy. Numerical experiments confirm the great reliability of the approach, in particular for small-to-moderate axis ratios ($e^2 lesssim 0.1$ typically). In contrast with the ellipsoidal case (Newtons theorem), the potential is not uniform inside the shell cavity as a consequence of the curvature. We explain how to construct the interior potential of toroidal shells with a thick edge (i.e. tubes), and how a core stratification can be accounted for. This is a new step towards the full description of the gravitating potential and forces of tori and rings. Applications also concern electrically-charged systems, and thus go beyond the context of gravitation.
By applying the theory of slowly rotating stars to the Sun, the solar quadrupole and octopole moments J2 and J4 were computed using a solar model obtained from CESAM stellar evolution code (Morel, 1997) combined with a recent model of solar different
We present new ALMA Band 6 observations including the CO(2-1) line and 1.3 mm continuum emission from the surroundings of the young stellar object DO Tauri. The ALMA CO molecular data show three different series of rings at different radial velocitie
We provide a status report on the determination of stellar ages from asteroseismology for stars of various masses and evolutionary stages. The ability to deduce the ages of stars with a relative precision of typically 10 to 20% is a unique opportunit
We consider bounds on the convergence of Ritz values from a sequence of Krylov subspaces to interior eigenvalues of Hermitean matrices. These bounds are useful in regions of low spectral density, for example near voids in the spectrum, as is required
We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed I