ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurable versions of Vizings theorem

156   0   0.0 ( 0 )
 نشر من قبل Jan Greb\\'ik
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

Soon after his 1964 seminal paper on edge colouring, Vizing asked the following question: can an optimal edge colouring be reached from any given proper edge colouring through a series of Kempe changes? We answer this question in the affirmative for triangle-free graphs.
The classical theorem of Vizing states that every graph of maximum degree $d$ admits an edge-coloring with at most $d+1$ colors. Furthermore, as it was earlier shown by KH{o}nig, $d$ colors suffice if the graph is bipartite. We investigate the exis tence of measurable edge-colorings for graphings. A graphing is an analytic generalization of a bounded-degree graph that appears in various areas, such as sparse graph limits, orbit equivalence theory and measurable group theory. We show that every graphing of maximum degree $d$ admits a measurable edge-coloring with $d + O(sqrt{d})$ colors; furthermore, if the graphing has no odd cycles, then $d+1$ colors suffice. In fact, if a certain conjecture about finite graphs that strengthens Vizings theorem is true, then our method will show that $d+1$ colors are always enough.
51 - Boris Bukh 2007
For a set of distances D={d_1,...,d_k} a set A is called D-avoiding if no pair of points of A is at distance d_i for some i. We show that the density of A is exponentially small in k provided the ratios d_1/d_2, d_2/d_3, ..., d_{k-1}/d_k are all smal l enough. This resolves a question of Szekely, and generalizes a theorem of Furstenberg-Katznelson-Weiss, Falconer-Marstrand, and Bourgain. Several more results on D-avoiding sets are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا