ﻻ يوجد ملخص باللغة العربية
Fano resonance exhibiting an asymmetric spectral line shape is a universal phenomenon observed in diverse physical systems. Here we experimentally establish a direct link between the spectral asymmetry parameter and a physically realizable phase factor of interference between a continuum and a discrete mode that leads to Fano resonance. Using a specially designed metamaterial, namely waveguided plasmonic crystal with a spatially varying orientation axis of plasmonic grating, we demonstrate control on the spectral asymmetry of the Fano resonance through changes in the geometric phase of polarized light. In this scenario, the changes in the geometric phase for input left, and right circular polarized light arises due to varying orientation angle of the grating axis. The systematic changes in the geometric phase and the resulting q-parameter of Fano resonance is interpreted by an appropriate theoretical model connecting the two physical entities. The demonstrated control over the spectral line shape of Fano resonance achieved by tailoring geometric phase may open up novel routes for polarization-based photonic applications.
We present a simple yet elegant Mueller matrix approach for controlling the Fano interference effect and engineering the resulting asymmetric spectral line shape in anisotropic optical system. The approach is founded on a generalized model of anisotr
Observation of the Fano line shapes is essential to understand properties of the Fano resonance in different physical systems. We explore a tunable Fano resonance by tuning the phase shift in a Mach-Zehnder interferometer (MZI) based on a single-mode
In this work, the circular dichroisms (CD) of nanorice heterodimers consisting of two parallel arranged nanorices with the same size but different materials are investigated theoretically. Symmetry-breaking is introduced by using different materials
In the quest to enhance light-matter interactions and miniaturize photonics devices, it is crucial to create a strong field enhancement with lower material losses. Here we combine a plasmonic Fano resonance supported by the silver cluster and anapole
In this work, we present a novel technique to directly measure the phase shift of the optical signal scattered by single plasmonic nanoparticles in a diffraction-limited laser focus. We accomplish this by equipping an inverted confocal microscope wit