ﻻ يوجد ملخص باللغة العربية
The holographic entanglement entropy (HEE) of the minimal geometrical deformation (MGD) procedure and extensions (EMGD), is scrutinized within the membrane paradigm of AdS/CFT. The HEE corrections of the Schwarzschild and Reissner--Nordstrom solutions, due to a finite fluid brane tension, are then derived and discussed in the context of the MGD and the EMGD.
We examine the deSitter entropy in the braneworld model with the Gauss-Bonnet/Lovelock terms. Then, we can see that the deSitter entropy computed through the Euclidean action exactly coincides with the holographic entanglement entropy.
We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in f
We calculate the holographic entanglement entropy (HEE) of the $mathbb{Z}_k$ orbifold of Lin-Lunin-Maldacena (LLM) geometries which are dual to the vacua of the mass-deformed ABJM theory with Chern-Simons level $k$. By solving the partial differentia
We explore the structure of holographic entropy relations (associated with information quantities given by a linear combination of entanglement entropies of spatial sub-partitions of a CFT state with geometric bulk dual). Such entropy relations can b
We consider the entropy bounds recently conjectured by Fischler, Susskind and Bousso, and proven in certain cases by Flanagan, Marolf and Wald (FMW). One of the FMW derivations supposes a covariant form of the Bekenstein entropy bound, the consequenc