ﻻ يوجد ملخص باللغة العربية
We construct range-separated double-hybrid schemes which combine coupled-cluster or random-phase approximations with a density functional based on a two-parameter Coulomb-attenuating-method-like decomposition of the electron-electron interaction. We find that the addition of a fraction of short-range electron-electron interaction in the wave-function part of the calculation is globally beneficial for the range-separated double-hybrid scheme involving a variant of the random-phase approximation with exchange terms. Even though the latter scheme is globally as accurate as the corresponding scheme employing only second-order M{{o}}ller-Plesset perturbation theory for atomization energies, reaction barrier heights, and weak intermolecular interactions of small molecules, it is more accurate for the more complicated case of the benzene dimer in the stacked configuration. The present range-separated double-hybrid scheme employing a random-phase approximation thus represents a new member in the family of double hybrids with minimal empiricism which could be useful for general chemical applications.
A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-elect
We provide a rationale for a new class of double-hybrid approximations introduced by Bremond and Adamo [J. Chem. Phys. 135, 024106 (2011)] which combine an exchange-correlation density functional with Hartree-Fock exchange weighted by $l$ and second-
We introduce an approximation to the short-range correlation energy functional with multide-terminantal reference involved in a variant of range-separated density-functional theory. This approximation is a local functional of the density, the density
We present a rigorous framework that combines single-particle Greens function theory with density functional theory based on a separation of electron-electron interactions into short-range and long-range components. Short-range contributions to the t
We extend the range-separated double-hybrid RSH+MP2 method [J. G. Angyan et al., Phys. Rev. A 72, 012510 (2005)], combining long-range HF exchange and MP2 correlation with a short-range density functional, to a fully self-consistent version using the