ترغب بنشر مسار تعليمي؟ اضغط هنا

DustPedia - the relationships between stars, gas and dust for galaxies residing in different environments

94   0   0.0 ( 0 )
 نشر من قبل Jonathan Davies Prof.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a sub-set of the DustPedia galaxy sample (461 galaxies) to investigate the effect the environment has had on galaxies. We consider Virgo cluster and field samples and also assign a density contrast parameter to each galaxy, as defined by the local density of SDSS galaxies. We consider their chemical evolution (using M_{Dust}/M_{Baryon} and M_{Gas}/M_{Baryon}), their specific star formation rate (SFR/M_{Stars}), star formation efficiency (SFR/M_{Gas}), stars-to-dust mass ratio (M_{Stars}/M_{Dust}), gas-to-dust mass ratio (M_{Gas}/M_{Dust}) and the relationship between star formation rate per unit mass of dust and dust temperature (SFR/M_{Dust} and T_{Dust}). Late type galaxies (later than Sc) in all of the environments can be modelled using simple closed box chemical evolution and a simple star formation history (SFR(t) propto texp{-t/tau}). For earlier type galaxies the physical mechanisms that give rise to their properties are clearly much more varied and require a more complicated model (mergers, gas in or outflow). However, we find little or no difference in the properties of galaxies of the same morphological type within the cluster, field or with different density contrasts. It appears that it is morphology, how and whenever this is laid down, and consistent internal physical processes that primarily determine the derived properties of galaxies in the DustPedia sample and not processes related to differences in the local environment.

قيم البحث

اقرأ أيضاً

59 - V. Casasola 2017
The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. This study is performed by exploiting th e multi-wavelength, from UV to sub-mm bands, DustPedia database, in addition to molecular (12CO) and atomic (HI) gas maps and metallicity abundance information available in the literature. We fitted the surface brightness profiles of the tracers of dust and stars, the mass surface density profiles of dust, stars, molecular gas, and total gas, and the SFR surface density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (alpha_CO) per galaxy by using dust and gas mass profiles. Although each galaxy has its own peculiar behaviour, we identified a common trend of the exponential scale-lengths vs. wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec^2 radius decrease from UV to 70 micron, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust mass surface density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 micron surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 micron scale-length tend to increase from earlier to later types, the scale-length at 70 micron tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 micron that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types.
Most radiative transfer models assume that dust in spiral galaxies is distributed exponentially. In this paper our goal is to verify this assumption by analysing the two-dimensional large-scale distribution of dust in galaxies from the DustPedia samp le. For this purpose, we make use of Herschel imaging in five bands, from 100 to 500{mu}m, in which the cold dust constituent is primarily traced and makes up the bulk of the dust mass in spiral galaxies. For a subsample of 320 disc galaxies, we successfully perform a simultaneous fitting with a single Sersic model of the Herschel images in all five bands using the multiband modelling code GALFITM. We report that the Sersic index $n$, which characterises the shape of the Sersic profile, lies systematically below 1 in all Herschel bands and is almost constant with wavelength. The average value at 250{mu}m is $0.67pm0.37$ (187 galaxies are fitted with $n_{250}leq0.75$, 87 galaxies have $0.75<n_{250}leq1.25$, and 46 - with $n_{250}>1.25$). Most observed profiles exhibit a depletion in the inner region (at $r<0.3-0.4$ of the optical radius $r_{25}$ ) and are more or less exponential in the outer part. We also find breaks in the dust emission profiles at longer distances $(0.5-0.6)r_{25}$ which are associated with the breaks in the optical and near-infrared. We assume that the observed deficit of dust emission in the inner galaxy region is related to the depression in the radial profile of the HI surface density in the same region because the atomic gas reaches high enough surface densities there to be transformed into molecular gas. If a galaxy has a triggered star formation in the inner region (for example, because of a strong bar instability, which transfers the gas inwards to the centre, or a pseudobulge formation), no depletion or even an excess of dust emission in the centre is observed.
311 - Mark Vogelsberger 2018
Simulating the dust content of galaxies and their surrounding gas is challenging due to the wide range of physical processes affecting the dust evolution. Here we present cosmological hydrodynamical simulations of a cluster of galaxies, $M_text{200,c rit}=6 times 10^{14},{rm M_odot}$, including a novel dust model for the moving mesh code {sc Arepo}. This model includes dust production, growth, supernova-shock-driven destruction, ion-collision-driven thermal sputtering, and high temperature dust cooling through far infrared re-radiation of collisionally deposited electron energies. Adopting a rather low thermal sputtering rate, we find, consistent with observations, a present-day overall dust-to-gas ratio of $sim 2times 10^{-5}$, a total dust mass of $sim 2times 10^9,{rm M_odot}$, and a dust mass fraction of $sim 3times 10^{-6}$. The typical thermal sputtering timescales within $sim 100,{rm kpc}$ are around $sim 10,{rm Myr}$, and increase towards the outer parts of the cluster to $sim 10^3,{rm Myr}$ at a cluster-centric distance of $1,{rm Mpc}$. The condensation of gas phase metals into dust grains reduces high temperature metal-line cooling, but also leads to additional dust infrared cooling. The additional infrared cooling changes the overall cooling rate in the outer parts of the cluster, beyond $sim 1,{rm Mpc}$, by factors of a few. This results in noticeable changes of the entropy, temperature, and density profiles of cluster gas once dust formation is included. The emitted dust infrared emission due to dust cooling is consistent with observational constraints.
Aims: We compare the far-infrared to sub-millimetre dust emission properties measured in high Galactic latitude cirrus with those determined in a sample of 204 late-type DustPedia galaxies. The aim is to verify if it is appropriate to use Milky Way d ust properties to derive dust masses in external galaxies. Methods: We used Herschel observations and atomic and molecular gas masses to estimate the disc-averaged dust emissivity at 250 micrometres, and from this, the absorption cross section per H atom and per dust mass. The emissivity requires one assumption, which is the CO-to-H_2 conversion factor, and the dust temperature is additionally required for the absorption cross section per H atom; yet another constraint on the dust-to-hydrogen ratio D/H, depending on metallicity, is required for the absorption cross section dust mass. Results: We find epsilon(250) = 0.82 +/- 0.07 MJy sr^-1 (1E20 H cm^-2)^-1 for galaxies with 4 < F(250)/F(500) < 5. This depends only weakly on the adopted CO-to-H_2 conversion factor. The value is almost the same as that for the Milky Way at the same colour ratio. Instead, for F(250)/F(500) > 6, epsilon(250) is lower than predicted by its dependence on the heating conditions. The reduction suggests a variation in dust emission properties for spirals of earlier type, higher metallicity, and with a higher fraction of molecular gas. When the standard emission properties of Galactic cirrus are used for these galaxies, their dust masses might be underestimated by up to a factor of two. Values for the absorption cross sections at the Milky Way metallicity are also close to those of the cirrus. Mild trends of the absorption cross sections with metallicity are found, although the results depend on the assumptions made.
286 - S. Bianchi , P. De Vis , S. Viaene 2018
We study the fraction of stellar radiation absorbed by dust, f_abs, in 814 galaxies of different morphological types. The targets constitute the vast majority (93%) of the DustPedia sample, including almost all large (optical diameter larger than 1), nearby (v <= 3000 km/s) galaxies observed with the Herschel Space Observatory. For each object, we model the spectral energy distribution from the ultraviolet to the sub-millimetre using the dedicated, aperture-matched DustPedia photometry and the fitting code CIGALE. The value of f_abs is obtained from the total luminosity emitted by dust and from the bolometric luminosity, which are estimated by the fit. On average, 19% of the stellar radiation is absorbed by dust in DustPedia galaxies. The fraction rises to 25% if only late-type galaxies are considered. The dependence of f_abs on morphology, showing a peak for Sb-Sc galaxies, is weak; it reflects a stronger, yet broad, positive correlation with the bolometric luminosity, which is identified for late-type, disk-dominated, high-specific-star-formation rate, gas-rich objects. We find no variation of f_abs with inclination, at odds with radiative transfer models of edge-on galaxies. These results call for a self-consistent modelling of the evolution of the dust mass and geometry along the build-up of the stellar content. We also provide template spectral energy distributions in bins of morphology and luminosity and study the variation of f_abs with stellar mass and specific star formation rate. We confirm that the local Universe is missing the high f_abs}, luminous and actively star-forming objects necessary to explain the energy budget in observations of the extragalactic background light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا