ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancing test precision for local Lorentz symmetry violation with entanglement

82   0   0.0 ( 0 )
 نشر من قبل Baocheng Zhang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent proposal for testing Lorentz symmetry violation (LSV) presents a formulation where the effect of violation is described as a local interaction [R. Shaniv, et al, Phys. Rev. Lett. 120, 103202 (2018)]. An entangled ion pair in a decoherence free subspace (DFS) is shown to double the signal to noise ratio (SNR) of one ion, while (even)-N/2 such DFS pairs in a collective entangled state improve SNR by N times, provided the state parity or the even/odd numbers of ions can be measured. It remains to find out, however, how such fiducial entangled states can be prepared at nonexponentially small success rates. This work suggests two types of many particle entangled states for testing LSV: the maximally entangled NOON state, which can achieve Heisenberg limited precision; and the balanced spin-1 Dicke state, which is readily available in deterministic fashion. We show that the latter also lives in a DFS and is immune to stray magnetic fields. It can achieve classical precision limit or the standard quantum limit (SQL) based on collective population measurement without individual atom resolution. Given the high interests in LSV and in entanglement assisted quantum metrology, our observation offers additional incentives for pursuing practical applications of many atom entangled states.

قيم البحث

اقرأ أيضاً

97 - Baocheng Zhang 2020
Lorentz symmetry violation (LV) was recently proposed to be testable with a new method, in which the effect of the violation is described as a certain local interaction [R. Shaniv, et al, PRL 120, 103202 (2018)]. We revisit this LV effect in the pape r and show that it is not only local, but it also represents a classical violation according to the recent quantum formulation of the Einstein equivalence principle (EEP). Based on a harmonically trapped spin-1/2 atomic system, we apply the results of table-top experiments testing LV effect to estimate the corresponding violation parameter in the quantum formulation of EEP. We find that the violation parameter is indeed very small, as expected by the earlier theoretical estimation.
110 - J. Alexandre 2013
We show how a mass mixing matrix can be generated dynamically, for two massless fermion flavours coupled to a Lorentz invariance violating (LIV) gauge field. The LIV features play the role of a regulator for the gap equations, and the non-analytic de pendence of the dynamical masses, as functions of the gauge coupling, allows to consider the limit where the LIV gauge field eventually decouples from the fermions. Lorentz invariance is then recovered, to describe the oscillation between two free fermion flavours, and we check that the finite dynamical masses are the only effects of the original LIV theory.
All evidence so far suggests that the absolute spatial orientation of an experiment never affects its outcome. This is reflected in the Standard Model of physics by requiring all particles and fields to be invariant under Lorentz transformations. The most well-known test of this important cornerstone of physics are Michelson-Morley-type experimentscite{MM, Herrmann2009,Eisele2009} verifying the isotropy of the speed of light. Lorentz symmetry also implies that the kinetic energy of an electron should be independent of the direction of its velocity, textit{i.e.,} its dispersion relation should be isotropic in space. In this work, we search for violation of Lorentz symmetry for electrons by performing an electronic analogue of a Michelson-Morley experiment. We split an electron-wavepacket bound inside a calcium ion into two parts with different orientations and recombine them after a time evolution of 95ms. As the Earth rotates, the absolute spatial orientation of the wavepackets changes and anisotropies in the electron dispersion would modify the phase of the interference signal. To remove noise, we prepare a pair of ions in a decoherence-free subspace, thereby rejecting magnetic field fluctuations common to both ionscite{Roos2006}. After a 23 hour measurement, we limit the energy variations to $htimes 11$ mHz ($h$ is Plancks constant), verifying that Lorentz symmetry is preserved at the level of $1times10^{-18}$. We improve on the Lorentz-violation limits for the electron by two orders of magnitudecite{Hohensee2013c}. We can also interpret our result as testing the rotational invariance of the Coloumb potential, improving limits on rotational anisotropies in the speed of light by a factor of fivecite{Herrmann2009,Eisele2009}. Our experiment demonstrates the potential of quantum information techniques in the search for physics beyond the Standard Model.
The high-energy astrophysical neutrinos recently discovered by IceCube opened a new way to test Lorentz and CPT violation through the astrophysical neutrino mixing properties. The flavor ratio of astrophysical neutrinos is a very powerful tool to inv estigate tiny effects caused by Lorentz and CPT violation. There are 3 main findings; (1) current limits on Lorentz and CPT violation in neutrino sector are not tight and they allow for any flavor ratios, (2) however, the observable flavor ratio on the Earth is tied with the flavor ratio at production, this means we can test both the presence of new physics and the astrophysical neutrino production mechanism simultaneously, and (3) the astrophysical neutrino flavor ratio is one of the most stringent tests of Lorentz and CPT violation.
We consider a background of the violation of the Lorentz symmetry determined by the tensor $left( K_{F}right)_{mu ualphabeta}$ which governs the Lorentz symmetry violation out of the Standard Model Extension, where this background gives rise to a Cou lomb-type potential, and then, we analyse its effects on a relativistic quantum oscillator. Furthermore, we analyse the behaviour of the relativistic quantum oscillator under the influence of a linear scalar potential and this background of the Lorentz symmetry violation. We show in both cases that analytical solutions to the Klein-Gordon equation can be achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا