ﻻ يوجد ملخص باللغة العربية
The finite gain-bandwidth product is a fundamental figure of merit that restricts the operation of standard optical amplifiers. In microcavity setups, this becomes a serious problem due to the narrow bandwidth of the device. Here we introduce a new design paradigm based on exceptional points, that relaxes this limitation and allows for building a new generation of optical amplifiers that exhibits better gain-bandwidth scaling relations. Importantly, our results can be extended to other physical systems such as acoustics and microwaves.
Exceptional points (EPs) are degeneracies in open wave systems with coalescence of at least two energy levels and their corresponding eigenstates. In higher dimensions, more complex EP physics not found in two-state systems is observed. We consider t
Planar microcavities allow the control and manipulation of spin-polarization, manifested in phenomena like the optical spin Hall effect due to the intrinsic polarization mode splitting. Here, we study a transparent microcavity with broken rotational
Exceptional points (EPs), at which both eigenvalues and eigenvectors coalesce, are ubiquitous and unique features of non-Hermitian systems. Second-order EPs are by far the most studied due to their abundance, requiring only the tuning of two real par
We uncover the existence of Dirac and exceptional points in waveguides made of anisotropic materials, and study the transition between them. Dirac points in the dispersion diagram appear at propagation directions where the matrix describing the eigen
We identify a new kind of physically realizable exceptional point (EP) corresponding to degenerate coherent perfect absorption, in which two purely incoming solutions of the wave operator for electromagnetic or acoustic waves coalesce to a single sta