ﻻ يوجد ملخص باللغة العربية
The VertexCover problem is proven to be computationally hard in different ways: It is NP-complete to find an optimal solution and even NP-hard to find an approximation with reasonable factors. In contrast, recent experiments suggest that on many real-world networks the run time to solve VertexCover is way smaller than even the best known FPT-approaches can explain. Similarly, greedy algorithms deliver very good approximations to the optimal solution in practice. We link these observations to two properties that are observed in many real-world networks, namely a heterogeneous degree distribution and high clustering. To formalize these properties and explain the observed behavior, we analyze how a branch-and-reduce algorithm performs on hyperbolic random graphs, which have become increasingly popular for modeling real-world networks. In fact, we are able to show that the VertexCover problem on hyperbolic random graphs can be solved in polynomial time, with high probability. The proof relies on interesting structural properties of hyperbolic random graphs. Since these predictions of the model are interesting in their own right, we conducted experiments on real-world networks showing that these properties are also observed in practice. When utilizing the same structural properties in an adaptive greedy algorithm, further experiments suggest that, on real instances, this leads to better approximations than the standard greedy approach within reasonable time.
Finding a minimum vertex cover in a network is a fundamental NP-complete graph problem. One way to deal with its computational hardness, is to trade the qualitative performance of an algorithm (allowing non-optimal outputs) for an improved running ti
A bipartite graph $G=(A,B,E)$ is ${cal H}$-convex, for some family of graphs ${cal H}$, if there exists a graph $Hin {cal H}$ with $V(H)=A$ such that the set of neighbours in $A$ of each $bin B$ induces a connected subgraph of $H$. Many $mathsf{NP}$-
Recent work has pinned down the existentially optimal size bounds for vertex fault-tolerant spanners: for any positive integer $k$, every $n$-node graph has a $(2k-1)$-spanner on $O(f^{1-1/k} n^{1+1/k})$ edges resilient to $f$ vertex faults, and ther
We present a near-tight analysis of the average query complexity -- `a la Nguyen and Onak [FOCS08] -- of the randomized greedy maximal matching algorithm, improving over the bound of Yoshida, Yamamoto and Ito [STOC09]. For any $n$-vertex graph of ave
We give an $n^{O(loglog n)}$-time membership query algorithm for properly and agnostically learning decision trees under the uniform distribution over ${pm 1}^n$. Even in the realizable setting, the previous fastest runtime was $n^{O(log n)}$, a cons