ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental evidence of a hydrodynamic soliton gas

80   0   0.0 ( 0 )
 نشر من قبل Nicolas Mordant
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an experimental realization of a bi-directional soliton gas in a 34~m-long wave flume in shallow water regime. We take advantage of the fission of a sinusoidal wave to inject continuously solitons that propagate along the tank, back and forth. Despite the unavoidable damping, solitons retain adiabatically their profile, while decaying. The outcome is the formation of a stationary state characterized by a dense soliton gas whose statistical properties are well described by a pure integrable dynamics. The basic ingredient in the gas, i.e. the two-soliton interaction, is studied in details and compared favourably with the analytical solutions of the Kaup-Boussinesq integrable equation. High resolution space-time measurements of the surface elevation in the wave flume provide a unique tool for studying experimentally the whole spectrum of excitations.



قيم البحث

اقرأ أيضاً

An experimental procedure for studying soliton gases in shallow water is devised. Nonlinear waves propagate at constant depth in a 34,m-long wave flume. At one end of the flume, the waves are generated by a piston-type wave-maker. The opposite end is a vertical wall. Wave interactions are recorded with a video system using seven side-looking cameras with a pixel resolution of 1,mm, covering 14,m of the flume. The accuracy in the detection of the water surface elevation is shown to be better than 0.1 mm. A continuous monochromatic forcing can lead to a random state such as a soliton gas. The measured wave field is separated into right- and left-propagating waves in the Radon space and solitary pulses are identified as solitons of KdV or Rayleigh types. Both weak and strong interactions of solitons are detected. These interactions induce phase shifts that constitute the seminal mechanism for disorganization and soliton gas formation.
A statistical theory of rogue waves is proposed and tested against experimental data collected in a long water tank where random waves with different degrees of nonlinearity are mechanically generated and free to propagate along the flume. Strong evi dence is given that the rogue waves observed in the tank are hydrodynamic instantons, that is, saddle point configurations of the action associated with the stochastic model of the wave system. As shown here, these hydrodynamic instantons are complex spatio-temporal wave field configurations, which can be defined using the mathematical framework of Large Deviation Theory and calculated via tailored numerical methods. These results indicate that the instantons describe equally well rogue waves that originate from a simple linear superposition mechanism (in weakly nonlinear conditions) or from a nonlinear focusing one (in strongly nonlinear conditions), paving the way for the development of a unified explanation to rogue wave formation.
Solitons are coherent structures that describe the nonlinear evolution of wave localizations in hydrodynamics, optics, plasma and Bose-Einstein condensates. While the Peregrine breather is known to amplify a single localized perturbation of a carrier wave of finite amplitude by a factor of three, there is a counterpart solution on zero background known as the degenerate two-soliton which also leads to high amplitude maxima. In this study, we report several observations of such multi-soliton with doubly-localized peaks in a water wave flume. The data collected in this experiment confirm the distinctive attainment of wave amplification by a factor of two in good agreement with the dynamics of the nonlinear Schrodinger equation solution. Advanced numerical simulations solving the problem of nonlinear free water surface boundary conditions of an ideal fluid quantify the physical limitations of the degenerate two-soliton in hydrodynamics.
Using Levi-Civitas theory of ideal fluids, we derive the complex Korteweg-de Vries (KdV) equation, describing the complex velocity of a shallow fluid up to first order. We use perturbation theory, and the long wave, slowly varying velocity approximat ions for shallow water. The complex KdV equation describes the nontrivial dynamics of all water particles from the surface to the bottom of the water layer. A crucial new step made in our work is the proof that a natural consequence of the complex KdV theory is that the wave elevation is described by the real KdV equation. The complex KdV approach in the theory of shallow fluids is thus more fundamental than the one based on the real KdV equation. We demonstrate how it allows direct calculation of the particle trajectories at any point of the fluid, and that these results agree well with numerical simulations of other authors.
99 - N. M. Zubarev 2000
The nonlinear dynamics of charged-surface instability development was investigated for liquid helium far above the critical point. It is found that, if the surface charge completely screens the field above the surface, the equations of three-dimensio nal (3D) potential motion of a fluid are reduced to the well-known equations describing the 3D Laplacian growth process. The integrability of these equations in 2D geometry allows the analytic description of the free-surface evolution up to the formation of cuspidal singularities at the surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا