ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Auxiliary Context: Discrete Semantic Transfer Hashing for Scalable Image Retrieval

79   0   0.0 ( 0 )
 نشر من قبل Lei Zhu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Unsupervised hashing can desirably support scalable content-based image retrieval (SCBIR) for its appealing advantages of semantic label independence, memory and search efficiency. However, the learned hash codes are embedded with limited discriminative semantics due to the intrinsic limitation of image representation. To address the problem, in this paper, we propose a novel hashing approach, dubbed as emph{Discrete Semantic Transfer Hashing} (DSTH). The key idea is to emph{directly} augment the semantics of discrete image hash codes by exploring auxiliary contextual modalities. To this end, a unified hashing framework is formulated to simultaneously preserve visual similarities of images and perform semantic transfer from contextual modalities. Further, to guarantee direct semantic transfer and avoid information loss, we explicitly impose the discrete constraint, bit--uncorrelation constraint and bit-balance constraint on hash codes. A novel and effective discrete optimization method based on augmented Lagrangian multiplier is developed to iteratively solve the optimization problem. The whole learning process has linear computation complexity and desirable scalability. Experiments on three benchmark datasets demonstrate the superiority of DSTH compared with several state-of-the-art approaches.

قيم البحث

اقرأ أيضاً

139 - Lei Zhu , Hui Cui , Zhiyong Cheng 2020
Social network stores and disseminates a tremendous amount of user shared images. Deep hashing is an efficient indexing technique to support large-scale social image retrieval, due to its deep representation capability, fast retrieval speed and low s torage cost. Particularly, unsupervised deep hashing has well scalability as it does not require any manually labelled data for training. However, owing to the lacking of label guidance, existing methods suffer from severe semantic shortage when optimizing a large amount of deep neural network parameters. Differently, in this paper, we propose a Dual-level Semantic Transfer Deep Hashing (DSTDH) method to alleviate this problem with a unified deep hash learning framework. Our model targets at learning the semantically enhanced deep hash codes by specially exploiting the user-generated tags associated with the social images. Specifically, we design a complementary dual-level semantic transfer mechanism to efficiently discover the potential semantics of tags and seamlessly transfer them into binary hash codes. On the one hand, instance-level semantics are directly preserved into hash codes from the associated tags with adverse noise removing. Besides, an image-concept hypergraph is constructed for indirectly transferring the latent high-order semantic correlations of images and tags into hash codes. Moreover, the hash codes are obtained simultaneously with the deep representation learning by the discrete hash optimization strategy. Extensive experiments on two public social image retrieval datasets validate the superior performance of our method compared with state-of-the-art hashing methods. The source codes of our method can be obtained at https://github.com/research2020-1/DSTDH
With the rapid growth of web images, hashing has received increasing interests in large scale image retrieval. Research efforts have been devoted to learning compact binary codes that preserve semantic similarity based on labels. However, most of the se hashing methods are designed to handle simple binary similarity. The complex multilevel semantic structure of images associated with multiple labels have not yet been well explored. Here we propose a deep semantic ranking based method for learning hash functions that preserve multilevel semantic similarity between multi-label images. In our approach, deep convolutional neural network is incorporated into hash functions to jointly learn feature representations and mappings from them to hash codes, which avoids the limitation of semantic representation power of hand-crafted features. Meanwhile, a ranking list that encodes the multilevel similarity information is employed to guide the learning of such deep hash functions. An effective scheme based on surrogate loss is used to solve the intractable optimization problem of nonsmooth and multivariate ranking measures involved in the learning procedure. Experimental results show the superiority of our proposed approach over several state-of-the-art hashing methods in term of ranking evaluation metrics when tested on multi-label image datasets.
285 - Hui Cui , Lei Zhu , Jingjing Li 2021
Hashing learns compact binary codes to store and retrieve massive data efficiently. Particularly, unsupervised deep hashing is supported by powerful deep neural networks and has the desirable advantage of label independence. It is a promising techniq ue for scalable image retrieval. However, deep models introduce a large number of parameters, which is hard to optimize due to the lack of explicit semantic labels and brings considerable training cost. As a result, the retrieval accuracy and training efficiency of existing unsupervised deep hashing are still limited. To tackle the problems, in this paper, we propose a simple and efficient emph{Lightweight Augmented Graph Network Hashing} (LAGNH) method with a two-pronged strategy. For one thing, we extract the inner structure of the image as the auxiliary semantics to enhance the semantic supervision of the unsupervised hash learning process. For another, we design a lightweight network structure with the assistance of the auxiliary semantics, which greatly reduces the number of network parameters that needs to be optimized and thus greatly accelerates the training process. Specifically, we design a cross-modal attention module based on the auxiliary semantic information to adaptively mitigate the adverse effects in the deep image features. Besides, the hash codes are learned by multi-layer message passing within an adversarial regularized graph convolutional network. Simultaneously, the semantic representation capability of hash codes is further enhanced by reconstructing the similarity graph.
Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and dee p hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, utilizing supervised information to directly guide discrete (binary) coding procedure can avoid sub-optimal solution and improve the accuracy. On the other hand, deep hashing, which integrates deep feature learning and hash-code learning into an end-to-end architecture, can enhance the feedback between feature learning and hash-code learning. The key in discrete supervised hashing is to adopt supervised information to directly guide the discrete coding procedure in hashing. The key in deep hashing is to adopt the supervised information to directly guide the deep feature learning procedure. However, there have not existed works which can use the supervised information to directly guide both discrete coding procedure and deep feature learning procedure in the same framework. In this paper, we propose a novel deep hashing method, called deep discrete supervised hashing (DDSH), to address this problem. DDSH is the first deep hashing method which can utilize supervised information to directly guide both discrete coding procedure and deep feature learning procedure, and thus enhance the feedback between these two important procedures. Experiments on three real datasets show that DDSH can outperform other state-of-the-art baselines, including both discrete hashing and deep hashing baselines, for image retrieval.
Semantic hashing represents documents as compact binary vectors (hash codes) and allows both efficient and effective similarity search in large-scale information retrieval. The state of the art has primarily focused on learning hash codes that improv e similarity search effectiveness, while assuming a brute-force linear scan strategy for searching over all the hash codes, even though much faster alternatives exist. One such alternative is multi-index hashing, an approach that constructs a smaller candidate set to search over, which depending on the distribution of the hash codes can lead to sub-linear search time. In this work, we propose Multi-Index Semantic Hashing (MISH), an unsupervised hashing model that learns hash codes that are both effective and highly efficient by being optimized for multi-index hashing. We derive novel training objectives, which enable to learn hash codes that reduce the candidate sets produced by multi-index hashing, while being end-to-end trainable. In fact, our proposed training objectives are model agnostic, i.e., not tied to how the hash codes are generated specifically in MISH, and are straight-forward to include in existing and future semantic hashing models. We experimentally compare MISH to state-of-the-art semantic hashing baselines in the task of document similarity search. We find that even though multi-index hashing also improves the efficiency of the baselines compared to a linear scan, they are still upwards of 33% slower than MISH, while MISH is still able to obtain state-of-the-art effectiveness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا