ﻻ يوجد ملخص باللغة العربية
Information scrambling, characterized by the out-of-time-ordered correlator (OTOC), has attracted much attention, as it sheds new light on chaotic dynamics in quantum many-body systems. The scale invariance, which appears near the quantum critical region in condensed matter physics, is considered to be important for the fast decay of the OTOC. In this paper, we focus on the one-dimensional spin-1/2 XXZ model, which exhibits quantum criticality in a certain parameter region, and investigate the relationship between scrambling and the scale invariance. We quantify scrambling by the averaged OTOC over the Pauli operator basis, which is related to the operator space entanglement entropy (OSEE). Using the infinite time-evolving block decimation (iTEBD) method, we numerically calculate time dependence of the OSEE in the early time region in the thermodynamic limit. We show that the averaged OTOC decays faster in the gapless region than in the gapped region. In the gapless region, the averaged OTOC behaves in the same manner regardless of the anisotropy parameter. This result is consistent with the fact that the low energy excitations of the gapless region belong to the same universality class as the Tomonaga-Luttinger liquid with the central charge c = 1. Furthermore, we estimate c by fitting the numerical data of the OSEE with an analytical result of the two-dimensional conformal field theory, and confirmed that c is close to unity. Thus, our numerical results suggest that the scale invariance is crucial for the universal behavior of the OTOC.
A string of trapped ions at zero temperature exhibits a structural phase transition to a zigzag structure, tuned by reducing the transverse trap potential or the interparticle distance. The transition is driven by transverse, short wavelength vibrati
We derive some entanglement properties of the ground states of two classes of quantum spin chains described by the Fredkin model, for half-integer spins, and the Motzkin model, for integer ones. Since the ground states of the two models are known ana
The Motzkin and Fredkin quantum spin chains are described by frustration-free Hamiltonians recently introduced and studied because of their anomalous behaviors in the correlation functions and in the entanglement properties. In this paper we analyze
We investigate spin chains with bilinear-biquadratic spin interactions as a function of an applied magnetic field $h$. At the Uimin-Lai-Sutherland (ULS) critical point we find a remarkable hierarchy of fractionalized excitations revealed by the dynam
A quasi one--dimensional system of trapped, repulsively interacting atoms (e.g., an ion chain) exhibits a structural phase transition from a linear chain to a zigzag structure, tuned by reducing the transverse trap potential or increasing the particl