ﻻ يوجد ملخص باللغة العربية
Shortcuts to adiabaticity (STA) are fast routes to the final results of slow, adiabatic changes of the controlling parameters of a system. The shortcuts are designed by a set of analytical and numerical methods suitable for different systems and conditions. A motivation to apply STA methods to quantum systems is to manipulate them on timescales shorter than decoherence times. Thus shortcuts to adiabaticity have become instrumental in preparing and driving internal and motional states in atomic, molecular, and solid-state physics. Applications range from information transfer and processing based on gates or analog paradigms to interferometry and metrology. The multiplicity of STA paths for the controlling parameters may be used to enhance robustness versus noise and perturbations or to optimize relevant variables. Since adiabaticity is a widespread phenomenon, STA methods also extended beyond the quantum world to optical devices, classical mechanical systems, and statistical physics. Shortcuts to adiabaticity combine well with other concepts and techniques, in particular, with optimal control theory, and pose fundamental scientific and engineering questions such as finding speed limits, quantifying the third law, or determining process energy costs and efficiencies. Concepts, methods, and applications of shortcuts to adiabaticity are reviewed and promising prospects are outlined, as well as open questions and challenges ahead.
Different techniques to speed up quantum adiabatic processes are currently being explored for applications in atomic, molecular and optical physics, such as transport, cooling and expansions, wavepacket splitting, or internal state control. Here we e
Shortcuts to adiabaticity let a system reach the results of a slow adiabatic process in a shorter time. We propose to quantify the energy cost of the shortcut by the energy consumption of the system enlarged by including the control device. A mechani
Spin echo can be used to refocus random dynamical phases caused by inhomogeneities in control fields and thereby retain the purity of a spatial distribution of quantum spins. This technique for accurate spin control is an essential ingredient in many
Fast and robust quantum control protocols are often based on an idealised approximate description of the relevant quantum system. While this may provide a performance which is close to optimal, improvements can be made by incorporating elements of th
A Schrodinger equation may be transformed by unitary operators into dynamical equations in different interaction pictures which share with it a common physical frame, i.e., the same underlying interactions, processes and dynamics. In contrast to this