ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational lensing reveals ionizing ultraviolet photons escaping from a distant galaxy

71   0   0.0 ( 0 )
 نشر من قبل Th{\\o}ger Emil Rivera-Thorsen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the epoch of reionisation, neutral gas in the early Universe was ionized by hard ultraviolet radiation emitted by young stars in the first galaxies. To do so, ionizing ultraviolet photons must escape from the host galaxy. We present Hubble Space Telescope observations of the gravitationally lensed galaxy PSZ1-ARC G311.6602-18.4624, revealing bright, multiply-imaged ionizing photon escape from a compact star-forming region through a narrow channel in an optically thick gas. The gravitational lensing magnification shows how ionizing photons escape this galaxy, contributing to the re-ionization of the Universe. The multiple sight lines to the source probe absorption by intergalactic neutral hydrogen on scales of no more than a few hundred, perhaps even less than ten, parsec.

قيم البحث

اقرأ أيضاً

A population of early star-forming galaxies is the leading candidate for the re-ionization of the universe. It is still unclear what conditions and physical processes would enable a significant fraction of the ionizing photons to escape from these ga s-rich galaxies. In this paper we present the results of the analysis of HST COS far-UV spectroscopy plus ancillary multi-waveband data of a sample of 22 low-redshift galaxies that are good analogs to typical star-forming galaxies at high-redshift. We measure three parameters that provide indirect evidence of the escape of ionizing radiation: (1) the residual intensity in the cores of saturated interstellar low-ionization absorption-lines. (2) The relative amount of blue-shifted Lyman alpha line emission, and (3) the relative weakness of the [SII] optical emission lines. We use these diagnostics to rank-order our sample in terms of likely leakiness, noting that a direct measure of escaping Lyman continuum has recently been made for one of the leakiest members of our sample. We then examine the correlations between our ranking and other proposed diagnostics of leakiness and find a correlation with the equivalent width of the Lyman alpha emission-line. Turning to galaxy properties, we find the strongest correlations with leakiness are with the compactness of the star-forming region and the speed of the galactic outflow. This suggests that extreme feedback- a high intensity of ionizing radiation and strong pressure from both radiation and a hot galactic wind- combines to create significant holes in the neutral gas. These results not only shed new light on the physical mechanisms that can allow ionizing radiation to escape from intensely star-forming galaxies, they also provide indirect observational indicators that can be used at high-redshift where direct measurements of escaping Lyman continuum radiation are impossible.
75 - Rachel Mandelbaum 2014
In this review, I discuss the use of galaxy-galaxy weak lensing measurements to study the masses of dark matter halos in which galaxies reside. After summarizing how weak gravitational lensing measurements can be interpreted in terms of halo mass, I review measurements that were used to derive the relationship between optical galaxy mass tracers, such as stellar mass or luminosity, and dark matter halo mass. Measurements of galaxy-galaxy lensing from the past decade have led to increasingly tight constraints on the connection between dark matter halo mass and optical mass tracers, including both the mean relationships between these quantities and the intrinsic scatter between them. I also review some of the factors that can complicate analysis, such as the choice of modeling procedure, and choices made when dividing up samples of lens galaxies.
In this paper we calculate the escape fraction ($f_{rm esc}$) of ionizing photons from starburst galaxies. Using 2-D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the e scape fraction of ionizing photons from the center of the disk along different angles through the superbubble and the gas disk. After convolving with the luminosity function of OB associations, we show that the ionizing photons escape within a cone of $sim 40 ^circ$, consistent with observations of nearby galaxies. The evolution of the escape fraction with time shows that it falls initially as cold gas is accumulated in a dense shell. After the shell crosses a few scale heights and fragments, the escape fraction through the polar regions rises again. The angle-averaged escape fraction cannot exceed $sim [1- cos (1 , {rm radian})] = 0.5$ from geometrical considerations (using the emission cone opening angle). We calculate the dependence of the time- and angle-averaged escape fraction on the mid-plane disk gas density (in the range $n_0=0.15-50$ cm $^{-3}$) and the disk scale height (between $z_0=10-600$ pc). We find that the escape fraction is related to the disk parameters (the mid-plane disk density and scale height) roughly so that $f_{rm esc}^alpha n_0^2 z_0^3$ (with $alphaapprox 2.2$) is a constant. For disks with a given WNM temperature, massive disks have lower escape fraction than low mass galaxies. For Milky Way ISM parameters, we find $f_{rm esc}sim 5%$, and it increases to $approx 10%$ for a galaxy ten times less massive. We discuss the possible effects of clumpiness of the ISM on the estimate of the escape fraction and the implications of our results for the reionization of the universe.
110 - Ji-hoon Kim 2012
We describe a new method for simulating ionizing radiation and supernova feedback in the analogues of low-redshift galactic disks. In this method, which we call star-forming molecular cloud (SFMC) particles, we use a ray-tracing technique to solve th e radiative transfer equation for ultraviolet photons emitted by thousands of distinct particles on the fly. Joined with high numerical resolution of 3.8 pc, the realistic description of stellar feedback helps to self-regulate star formation. This new feedback scheme also enables us to study the escape of ionizing photons from star-forming clumps and from a galaxy, and to examine the evolving environment of star-forming gas clumps. By simulating a galactic disk in a halo of 2.3e11 Msun, we find that the average escape fraction from all radiating sources on the spiral arms (excluding the central 2.5 kpc) fluctuates between 0.08% and 5.9% during a ~20 Myr period with a mean value of 1.1%. The flux of escaped photons from these sources is not strongly beamed, but manifests a large opening angle of more than 60 degree from the galactic pole. Further, we investigate the escape fraction per SFMC particle, f_esc(i), and how it evolves as the particle ages. We discover that the average escape fraction f_esc is dominated by a small number of SFMC particles with high f_esc(i). On average, the escape fraction from a SFMC particle rises from 0.27% at its birth to 2.1% at the end of a particle lifetime, 6 Myrs. This is because SFMC particles drift away from the dense gas clumps in which they were born, and because the gas around the star-forming clumps is dispersed by ionizing radiation and supernova feedback. The framework established in this study brings deeper insight into the physics of photon escape fraction from an individual star-forming clump, and from a galactic disk.
81 - S. Salvadori 2013
We estimate the potential contribution of M < 10^9 Msun dwarf galaxies to the reionization and early metal-enrichment of the Milky Way environment, or circum-Galactic Medium. Our approach is to use the observed properties of ancient stars (> 12 Gyr o ld) measured in nearby dwarf galaxies to characterize the star-formation at high-z. We use a merger-tree model for the build-up of the Milky Way, which self-consistently accounts for feedback processes, and which is calibrated to match the present-day properties of the Galaxy and its dwarf satellites. We show that the high-z analogues of nearby dwarf galaxies can produce the bulk of ionizing radiation (>80%) required to reionize the Milky Way environment. Our fiducial model shows that the gaseous environment can be 50% reionized at z ~ 8 by galaxies with 10^7 Msun < M < 10^8 Msun. At later times, radiative feedback stops the star-formation in these small systems, and reionization is completed by more massive dwarf galaxies by z_rei = 6.4pm 0.5. The metals ejected by supernova-driven outflows from M < 10^9 Msun dwarf galaxies almost uniformly fill the Milky Way environment by z ~ 5, enriching it to Z ~ 2 10^-2 Zsun. At z ~ 2 these early metals are still found to represent ~ 50% of the total mass of heavy elements in the circum-Galactic Medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا