ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological constraints on neutrino self-interactions with a light mediator

97   0   0.0 ( 0 )
 نشر من قبل Massimiliano Lattanzi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

If active neutrinos undergo non-standard (`secret) interactions (NS$ u$I) the cosmological evolution of the neutrino fluid might be altered, leaving an imprint in cosmological observables. We use the latest publicly available CMB data from Planck to constrain NS$ u$I inducing $ u- u$ scattering, under the assumption that the mediator $phi$ of the secret interaction is very light. We find that the effective coupling constant of the interaction, $g_mathrm{eff}^4 equiv langle sigma vrangle T_ u^2$, is constrained at $< 2.35times10^{-27}$ (95% credible interval), which stregthens to $g_mathrm{eff}^4 < 1.64times10^{-27}$ when Planck non-baseline small-scale polarization is considered. Our findings imply that after decoupling at $Tsimeq 1$ MeV, cosmic neutrinos are free streaming at redshifts $z>3800$, or $z>2300$ if small-scale polarization is included. These bounds are only marginally improved when data from geometrical expansion probes are included in the analysis to complement Planck. We also find that the tensions between CMB and low-redshift measurements of the expansion rate $H_0$ and the amplitude of matter fluctuations $sigma_8$ are not significantly reduced. Our results are independent on the underlying particle physics model as long as $phi$ is very light. Considering a model with Majorana neutrinos and a pseudoscalar mediator we find that the coupling constant $g$ of the secret interaction is constrained at $lesssim 7times 10^{-7}$. By further assuming that the pseudoscalar interaction comes from a dynamical realization of the see-saw mechanism, as in Majoron models, we can bound the scale of lepton number breaking $v_sigma$ as $gtrsim (1.4times 10^{6})m_ u$.



قيم البحث

اقرأ أيضاً

We have updated the constraints on flavour universal neutrino self-interactions mediated by a heavy scalar, in the effective 4-fermion interaction limit. We use the relaxation time approximation to modify the collisional neutrino Boltzmann equations, which is known to be very accurate for this particular scenario. Based on the latest CMB data from the Planck 2018 data release as well as auxiliary data we confirm the presence of a region in parameter space with relatively strong self-interactions which provides a better than naively expected fit. However, we also find that the most recent data, in particular high-$ell$ polarisation data from the Planck 2018 release, disfavours this solution even though it cannot yet be excluded. Our analysis takes into account finite neutrino masses (parameterised in terms of $sum m_{ u}$) and allows for a varying neutrino energy density (parameterised in terms of $N_{rm eff}$), and we find that in all cases the neutrino mass bound inferred from cosmological data is robust against the presence of neutrino self-interactions. Finally, we also find that the strong neutrino self-interactions do not lead to a high value of $H_0$ being preferred, i.e. this model is not a viable solution to the current $H_0$ discrepancy.
Dark matter interactions with electrons or protons during the early Universe leave imprints on the cosmic microwave background and the matter power spectrum, and can be probed through cosmological and astrophysical observations. We explore these inte ractions using a diverse suite of data: cosmic microwave background anisotropies, baryon acoustic oscillations, the Lyman-$alpha$ forest, and the abundance of Milky-Way subhalos. We derive constraints using model-independent parameterizations of the dark matter--electron and dark matter--proton interaction cross sections and map these constraints onto concrete dark matter models. Our constraints are complementary to other probes of dark matter interactions with ordinary matter, such as direct detection, big bang nucleosynthesis, various astrophysical systems, and accelerator-based experiments.
Many scenarios of physics beyond the standard model predict new light, weakly coupled degrees of freedom, populated in the early universe and remaining as cosmic relics today. Due to their high abundances, these relics can significantly affect the ev olution of the universe. For instance, massless relics produce a shift $Delta N_{rm eff}$ to the cosmic expectation of the effective number of active neutrinos. Massive relics, on the other hand, additionally become part of the cosmological dark matter in the later universe, though their light nature allows them to freely stream out of potential wells. This produces novel signatures in the large-scale structure (LSS) of the universe, suppressing matter fluctuations at small scales. We present the first general search for such light (but massive) relics (LiMRs) with cosmic microwave background (CMB) and LSS data, scanning the 2D parameter space of their masses $m_X$ and temperatures $T_X^{(0)}$ today. In the conservative minimum-temperature ($T_X^{(0)}=0.91$ K) scenario, we rule out Weyl (and higher-spin) fermions -- such as the gravitino -- with $m_Xgeq 2.26$ eV at 95% C.L., and set analogous limits of $m_Xleq 11.2, 1.06, 1.56$ eV for scalar, vector, and Dirac-fermion relics. This is the first search for LiMRs with joint CMB, weak-lensing, and full-shape galaxy data; we demonstrate that weak-lensing data is critical for breaking parameter degeneracies, while full-shape information presents a significant boost in constraining power relative to analyses with only baryon acoustic oscillation parameters. Under the combined strength of these datasets, our constraints are the tightest and most comprehensive to date.
Neutrinos are one of the major puzzles in modern physics. Despite measurements of mass differences, the Standard Model of particle physics describes them as exactly massless. Additionally, recent measurements from both particle physics experiments an d cosmology indicate the existence of more than the three Standard Model species. Here we review the cosmological evidence and its possible interpretations.
New physics in the neutrino sector might be necessary to address anomalies between different neutrino oscillation experiments. Intriguingly, it also offers a possible solution to the discrepant cosmological measurements of $H_0$ and $sigma_8$. We sho w here that delaying the onset of neutrino free-streaming until close to the epoch of matter-radiation equality can naturally accommodate a larger value for the Hubble constant $H_0=72.3 pm 1.4$ km/s/Mpc and a lower value of the matter fluctuations $sigma_8=0.786pm 0.020$, while not degrading the fit to the cosmic microwave background (CMB) damping tail. We achieve this by introducing neutrino self-interactions in the presence of a non-vanishing sum of neutrino masses. This strongly interacting neutrino cosmology prefers $N_{rm eff} = 4.02 pm 0.29$, which has interesting implications for particle model-building and neutrino oscillation anomalies. We show that the absence of the neutrino free-streaming phase shift on the CMB can be compensated by shifting the value of other cosmological parameters, hence providing an important caveat to the detections made in the literature. Due to their impact on the evolution of the gravitational potential at early times, self-interacting neutrinos and their subsequent decoupling leave a rich structure on the matter power spectrum. In particular, we point out the existence of a novel localized feature appearing on scales entering the horizon at the onset of neutrino free-streaming. While the interacting neutrino cosmology provides a better global fit to current cosmological data, we find that traditional Bayesian analyses penalize the model as compared to the standard cosmological. Our analysis shows that it is possible to find radically different cosmological models that nonetheless provide excellent fits to the data, hence providing an impetus to thoroughly explore alternate cosmological scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا