ترغب بنشر مسار تعليمي؟ اضغط هنا

Impacts of Quantum Chemistry Calculations on Exoplanetary Science, Planetary Astronomy, and Astrophysics

113   0   0.0 ( 0 )
 نشر من قبل Der-You Kao
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several of NASA missions (TESS, JWST, WFIRST, etc.) and mission concepts (LUVOIR, HabEx, and OST) emphasize the exploration and characterization of exoplanets, and the study of the interstellar medium. We anticipate that a much broader set of chemical environments exists on exoplanets, necessitating data from a correspondingly broader set of chemical reactions. Similarly, the conditions that exist in astrophysical environments are very different from those traditionally probed in laboratory chemical kinetics studies. These are areas where quantum mechanical theory, applied to important reactions via well-validated chemical kinetics models, can fill a critical knowledge gap. Quantum chemical calculations are also introduced to study interior of planets, photochemical escape, and many critical chemical pathways (e.g. prebiotic environments, contaminations, etc.) After years of development of the relevant quantum chemical theories and significant advances in computational power, quantum chemical simulations have currently matured enough to describe real systems with an accuracy that competes with experiments. These approaches, therefore, have become the best possible alternative in many circumstances where performing experiments is too difficult, too expensive, or too dangerous, or simply not possible. In this white paper, several existing quantum chemical studies supporting exoplanetary science, planetary astronomy, and astrophysics are described, and the potential positive impacts of improved models associated with scientific goals of missions are addressed. In the end, a few recommendations from the scientific community to strengthen related research efforts at NASA are provided.

قيم البحث

اقرأ أيضاً

85 - Sibylle Anderl 2015
This article looks at philosophical aspects and questions that modern astrophysical research gives rise to. Other than cosmology, astrophysics particularly deals with understanding phenomena and processes operating at intermediate cosmic scales, whic h has rarely aroused philosophical interest so far. Being confronted with the attribution of antirealism by Ian Hacking because of its observational nature, astrophysics is equipped with a characteristic methodology that can cope with the missing possibility of direct interaction with most objects of research. In its attempt to understand the causal history of singular phenomena it resembles the historical sciences, while the search for general causal relations with respect to classes of processes or objects can rely on the cosmic laboratory: the multitude of different phenomena and environments, naturally provided by the universe. Furthermore, the epistemology of astrophysics is strongly based on the use of models and simulations and a complex treatment of large amounts of data.
Conceptually exoplanet research has one foot in the discipline of Astrophysics and the other foot in Planetary Science. Research strategies for exoplanets will require efficient access to data and information from both realms. Astrophysics has a soph isticated, well integrated, distributed information system with archives and data centers which are interlinked with the technical literature via the Astrophysics Data System (ADS). The information system for Planetary Science does not have a central component linking the literature with the observational and theoretical data. Here we propose that the Committee on an Exoplanet Science Strategy recommend that this linkage be built, with the ADS playing the role in Planetary Science which it already plays in Astrophysics. This will require additional resources for the ADS, and the Planetary Data System (PDS), as well as other international collaborators
Observations of extrasolar planets were not projected to be a significant part of the Spitzer Space Telescopes mission when it was conceived and designed. Nevertheless, Spitzer was the first facility to detect thermal emission from a hot Jupiter, and the range of Spitzers exoplanetary investigations grew to encompass transiting planets, microlensing, brown dwarfs, and direct imaging searches and astrometry. Spitzer used phase curves to measure the longitudinal distribution of heat as well as time-dependent heating on hot Jupiters. Spitzers secondary eclipse observations strongly constrained the dayside thermal emission spectra and corresponding atmospheric compositions of hot Jupiters, and the timings of eclipses were used for studies of orbital dynamics. Spitzers sensitivity to carbon-based molecules such as methane and carbon monoxide was key to atmospheric composition studies of transiting exoplanets as well as imaging spectroscopy of brown dwarfs, and complemented Hubble spectroscopy at shorter wavelengths. Spitzers capability for long continuous observing sequences enabled searches for new transiting planets around cool stars, and helped to define the architectures of planetary systems like TRAPPIST-1. Spitzer measured masses for small planets at large orbital distances using microlensing parallax. Spitzer observations of brown dwarfs probed their temperatures, masses, and weather patterns. Imaging and astrometry from Spitzer was used to discover new planetary mass brown dwarfs and to measure distances and space densities of many others.
172 - Gilles Chabrier 2009
In this review, I briefly summarize the present status of experimental and theoretical investigations of the properties of matter under conditions characteristic of planetary interiors, from terrestrial to jovian planets. I first focus on the two lig htest elements, hydrogen and helium, and discuss recent theoretical and experimental investigations of their properties at high pressure and temperature. Then, I discuss the impact of these properties, as well as of the equation of state of heavier elements, on planetary interiors. Finally, I highlight the importance of exoplanet transit observations and of the inferred mass-radius relationships to determine the planetary interior compositions.
205 - Dara Norman 2009
The NSFs Astronomy and Astrophysics Postdoctoral Fellowship (AAPF) is exceptional among the available postdoctoral awards in Astronomy and Astrophysics. The fellowship is one of the few that allows postdoctoral researchers to pursue an original resea rch program, of their own design, at the U.S. institution of their choice. However, what makes this fellowship truly unique is the ability of Fellows to lead an equally challenging, original educational program simultaneously. The legacy of this singular fellowship has been to encourage and advance leaders in the field who are equally as passionate about their own research as they are about sharing that research and their passion for astronomy with students and the public. In this positional paper we address the importance of fellowships like the AAPF to the astronomical profession by identifying the science and educational contributions that Fellows have made to the community. Further, we recommend that fellowships that encourage leading postdoctoral researchers to also become leaders in Astronomy education be continued and expanded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا