ﻻ يوجد ملخص باللغة العربية
We study two-interval holographic entanglement entropy and entanglement wedge cross section in cutoff AdS. In particular, we investigate phase transitions of them. For two-interval entanglement entropy, the transition point monotonically decreases with a deformation parameter, which means that by the TT deformation the degrees of freedom in subsystems are decreasing. This implies that the effect of the TT deformation can be regarded as the rescaling of the energy scale. We also study entanglement wedge cross section in cutoff AdS, and our result implies that for the entanglement of purification in the TT deformed CFTs phase transition could occur even for fixed subsystems.
We investigate the holographic entanglement entropy of deformed conformal field theories which are dual to a cutoff AdS space. The holographic entanglement entropy evaluated on a three-dimensional Poincare AdS space with a finite cutoff can be reinte
We discuss the holographic description of Narain $U(1)^ctimes U(1)^c$ conformal field theories, and their potential similarity to conventional weakly coupled gravity in the bulk, in the sense that the effective IR bulk description includes $U(1)$ gra
We propose an effective model of strongly coupled gauge theory at finite temperature on $R^3$ in the presence of an infrared cutoff. It is constructed by considering the theory on $S^3$ with an infrared cutoff and then taking the size of the $S^3$ to
In this paper we resolve a contradiction posed in a recent paper by Horowitz and Hubeny. The contradiction concerns the way small objects in AdS space are described in the holographic dual CFT description.
We discuss the scalar propagator on generic AdS_{d+1} x S^{d+1} backgrounds. For the conformally flat situations and masses corresponding to Weyl invariant actions the propagator is powerlike in the sum of the chordal distances with respect to AdS_{d