ﻻ يوجد ملخص باللغة العربية
This paper exploits the theory of geometric gradient flows to introduce an alternative regularization of the thin-film equation. The solution properties of this regularization are investigated via a sequence of numerical simulations whose results lead to new perspectives on thin-film behavior. The new perspectives in large-scale droplet-spreading dynamics are elucidated by comparing numerical-simulation results for the solution properties of the current model with corresponding known properties of three different alternative models. The three specific comparisons in solution behavior are made with the slip model, the precursor-film method and the diffuse-interface model.
If a droplet is placed on a substrate with a conical shape it spontaneously starts to spread in the direction of a growing fibre radius. We describe this capillary spreading dynamics by developing a lubrication approximation on a cone and by the pert
Plants and insects use slender conical structures to transport and collect small droplets, which are propelled along the conical structures due to capillary action. These droplets can deposit a fluid film during their motion, but despite its importan
We report the generation of directed self-propelled motion of a droplet of aniline oil with a velocity on the order of centimeters per second on an aqueous phase. It is found that, depending on the initial conditions, the droplet shows either circula
The present work investigates free damped oscillations of an oil drop in water after its release from a capillary tube. Both pure heptane drops and diluted crude oil drops are considered (in the second case the interface is covered by amphiphilic spe
In this article, we describe the instability of a contact line under nonequilibrium conditions mainly based on the results of our recent studies. Two experimental examples are presented: the self-propelled motion of a liquid droplet and spontaneous d