ترغب بنشر مسار تعليمي؟ اضغط هنا

A Geometric Diffuse-Interface Method for Droplet Spreading

86   0   0.0 ( 0 )
 نشر من قبل Lennon \\'O N\\'araigh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper exploits the theory of geometric gradient flows to introduce an alternative regularization of the thin-film equation. The solution properties of this regularization are investigated via a sequence of numerical simulations whose results lead to new perspectives on thin-film behavior. The new perspectives in large-scale droplet-spreading dynamics are elucidated by comparing numerical-simulation results for the solution properties of the current model with corresponding known properties of three different alternative models. The three specific comparisons in solution behavior are made with the slip model, the precursor-film method and the diffuse-interface model.

قيم البحث

اقرأ أيضاً

If a droplet is placed on a substrate with a conical shape it spontaneously starts to spread in the direction of a growing fibre radius. We describe this capillary spreading dynamics by developing a lubrication approximation on a cone and by the pert urbation method of matched asymptotic expansions. Our results show that the droplet appears to adopt a quasi-static shape and the predictions of the droplet shape and spreading velocity from the two mathematical models are in excellent agreement for a wide range of slip lengths, cone angles and equilibrium contact angles. At the contact line regions, a large pressure gradient is generated by the mismatch between the equilibrium contact angle and the apparent contact angle that maintains the viscous flow. It is the conical shape of the substrate that breaks the front/rear droplet symmetry in terms of the apparent contact angle, which is larger at the thicker part of the cone than that at its thinner part. Consequently, the droplet is predicted to move from the cone tip to its base, consistent with experimental observations.
Plants and insects use slender conical structures to transport and collect small droplets, which are propelled along the conical structures due to capillary action. These droplets can deposit a fluid film during their motion, but despite its importan ce to many biological systems and industrial applications the properties of the deposited film are unknown. We characterise the film deposition by developing an asymptotic analysis together with experimental measurements and numerical simulations based on the lubrication equation. We show that the deposited film thickness depends significantly on both the fiber radius and the droplet size, highlighting that the coating is affected by finite size effects relevant to film deposition on fibres of any slender geometry. We demonstrate that by changing the droplet size, while the mean fiber radius and the Capillary number are fixed, the thickness of the deposited film can change by an order of magnitude or more. We show that self-propelled droplets have significant potential to create passively coated structures.
We report the generation of directed self-propelled motion of a droplet of aniline oil with a velocity on the order of centimeters per second on an aqueous phase. It is found that, depending on the initial conditions, the droplet shows either circula r or beeline motion in a circular Petri dish. The motion of a droplet depends on volume of the droplet and concentration of solution. The velocity decreases when volume of the droplet and concentration of solution increase. Such unique motion is discussed in terms of Marangoni-driven spreading under chemical nonequilibrium. The simulation reproduces the mode of motion in a circular Petri dish.
The present work investigates free damped oscillations of an oil drop in water after its release from a capillary tube. Both pure heptane drops and diluted crude oil drops are considered (in the second case the interface is covered by amphiphilic spe cies, natural components of crude oil). Shadowgraph images of the drops are taken by means of a high speed camera and the drop contour is detected by image processing. The axisymmetric drop shape is then decomposed into spherical harmonics, which constitute the eigenmodes of oscillations predicted by the Rayleigh-Lamb theory. Time evolution of each mode is then obtained. The frequency and the damping rate of the principal mode (n=2) are accurately determined and compared with theoretical values for an immobile clean drop oscillating around spherical shape. For pure heptane drops, theoretical value of the frequency agrees well with experiments whereas the damping rate is significantly underestimated by theory. The experimental results clearly show that the different modes are coupled. Energy is thus transfered from mode n=2 to n=3, which probably explains the observed enhancement of the damping rate. The effect of the interface viscoelastic behaviour, induced by adsorbed amphiphilic species on the free oscillations was examined. No significant effect was observed in the experiments conditions (small amplitude oscillations and moderate aging).
In this article, we describe the instability of a contact line under nonequilibrium conditions mainly based on the results of our recent studies. Two experimental examples are presented: the self-propelled motion of a liquid droplet and spontaneous d ynamic pattern formation. For the self-propelled motion of a droplet, we introduce an experiment in which a droplet of aniline sitting on an aqueous layer moves spontaneously at an air-water interface. The spontaneous symmetry breaking of Marangoni-driven spreading causes regular motion. In a circular Petri dish, the droplet exhibits either beeline motion or circular motion. On the other hand, we show the emergence of a dynamic labyrinthine pattern caused by dewetting of a metastable thin film from the air-water interface. The contact line between the organic phase and aqueous phase forms a unique spatio-temporal pattern characterized as a dynamic labyrinthine. Motion of the contact line is controlled by diffusion processes. We propose a theoretical model to interpret essential aspects of the observed dynamic behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا