ﻻ يوجد ملخص باللغة العربية
In this article we study lossless compression of strings of pure quantum states of indeterminate-length quantum codes which were introduced by Schumacher and Westmoreland. Past work has assumed that the strings of quantum data are prepared to be encoded in an independent and identically distributed way. We introduce the notion of quantum stochastic ensembles, allowing us to consider strings of quantum states prepared in a more general way. For any identically distributed quantum stochastic ensemble we define an associated quantum Markov chain and prove that the optimal average codeword length via lossless coding is equal to the quantum dynamical entropy of the associated quantum Markov chain.
This paper provides an extensive study of the behavior of the best achievable rate (and other related fundamental limits) in variable-length lossless compression. In the non-asymptotic regime, the fundamental limits of fixed-to-variable lossless comp
Suppose there is a large file which should be transmitted (or stored) and there are several (say, m) admissible data-compressors. It seems natural to try all the compressors and then choose the best, i.e. the one that gives the shortest compressed fi
We introduce an axiomatic approach to entropies and relative entropies that relies only on minimal information-theoretic axioms, namely monotonicity under mixing and data-processing as well as additivity for product distributions. We find that these
In this study we show that standard well-known file compression programs (zlib, bzip2, etc.) are able to forecast real-world time series data well. The strength of our approach is its ability to use a set of data compression algorithms and automatica
According to Kolmogorov complexity, every finite binary string is compressible to a shortest code -- its information content -- from which it is effectively recoverable. We investigate the extent to which this holds for infinite binary sequences (str