ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical angular velocity and anisotropic mass loss of rotating stars with radiation-driven winds

57   0   0.0 ( 0 )
 نشر من قبل Damien Gagnier
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The understanding of the evolution of early-type stars is tightly related to that of the effects of rapid rotation. For massive stars, rapid rotation combines with their strong radiation-driven wind. The aim of this paper is to investigate two questions that are prerequisite to the study of the evolution of massive rapidly rotating stars: (i) What is the critical angular velocity of a star when radiative acceleration is significant in its atmosphere? (ii) How do mass and angular momentum loss depend on the rotation rate? To investigate fast rotation, which makes stars oblate, we used the 2D ESTER models and a simplified approach, the $omega$-model, which gives the latitudinal dependence of the radiative flux in a centrifugally flattened radiative envelope. We find that radiative acceleration only mildly influences the critical angular velocity, at least for stars with masses lower than 40 Msun. We explain this mild reduction of the critical angular velocity compared to the classical Keplerian angular velocity by the combined effects of gravity darkening and a reduced equatorial opacity that is due to the centrifugal acceleration. To answer the second question, we first devised a model of the local surface mass flux, which we calibrated with previously developed 1D models. The discontinuity (the so-called bi-stability jump) included in the $dot{M}-T_{rm eff}$ relation of 1D models means that the mass flux of a fast-rotating star is controlled by either a single wind or a two-wind regime. Mass and angular momentum losses are strong around the equator if the star is in the two-wind regime. We also show that the difficulty of selecting massive stars that are viewed pole-on makes detecting the discontinuity in the relation between mass loss and effective temperature also quite challenging.

قيم البحث

اقرأ أيضاً

Observations of stellar rotation show that low-mass stars lose angular momentum during the main sequence. We simulate the winds of Sun-like stars with a range of rotation rates, covering the fast and slow magneto-rotator regimes, including the transi tion between the two. We generalize an Alfven-wave driven solar wind model that builds on previous works by including the magneto-centrifugal force explicitly. In this model, the surface-averaged open magnetic flux is assumed to scale as $B_ast f^{rm open}_ast propto {rm Ro}^{-1.2}$, where $f^{rm open}_ast$ and ${rm Ro}$ are the surface open-flux filling factor and Rossby number, respectively. We find that, 1. the angular momentum loss rate (torque) of the wind is described as $tau_w approx 2.59 times 10^{30} {rm erg} left( Omega_ast / Omega_odot right)^{2.82}$, yielding a spin-down law $Omega_ast propto t^{-0.55}$. 2. the mass-loss rate saturates at $dot{M}_w sim 3.4 times 10^{-14} M_odot {rm yr^{-1}}$, due to the strong reflection and dissipation of Alfven waves in the chromosphere. This indicates that the chromosphere has a strong impact in connecting the stellar surface and stellar wind. Meanwhile, the wind ram pressure scales as $P_w propto Omega_ast^{0.57}$, which is able to explain the lower-envelope of the observed stellar winds by Wood et al. 3. the location of the Alfven radius is shown to scale in a way that is consistent with 1D analytic theory. Additionally, the precise scaling of the Alfven radius matches previous works which used thermally-driven winds. Our results suggest that the Alfven-wave driven magnetic rotator wind plays a dominant role in the stellar spin-down during the main-sequence.
We present two self-consistent procedures that couple the hydrodynamics with calculations of the line-force in the frame of radiation wind theory. These procedures give us the line-force parameters, the velocity field, and the mass-loss rate. The fir st one is based on the so-called m-CAK theory. A full set of line-force parameters for $T_text{eff}ge 32,000$ K and surface gravities higher than 3.4 dex for two different metallicities are presented, along with their corresponding wind parameters. We find that the dependence of line-force parameters on effective temperature is enhanced by the dependence on $log g$. For the case of homogeneous winds (without clumping) comparison of self-consistent mass-loss rates shows a good agreement with empirical values. We also consider self-consistent wind solutions that are used as input in FASTWIND to calculate synthetic spectra. By comparison with the observed spectra for three stars with clumped winds, we found that varying the clumping factor the synthetic spectra rapidly converge into the neighbourhood region of the solution. Therefore, this self-consistent m-CAK procedure significantly reduces the number of free parameters needed to obtain a synthetic spectrum. The second procedure (called Lambert-procedure) provides a self-consistent solution beyond m-CAK theory, and line-acceleration is calculated by the full NLTE radiative transfer code CMFGEN. Both the mass-loss rate and the clumping factor are set as free parameters, hence their values are obtained by spectral fitting after the respective self-consistent hydrodynamics is calculated. Since performing the Lambert-procedure requires significant computational power, the analysis is made only for the star z-Puppis. The promising results gives a positive balance about the future applications for the self-consistent solutions presented on this thesis.
The onset of cool massive winds in evolved giants is correlated with an evolutionary feature on the red giant branch known as the bump. Also at the bump, shear instability in the star leads to magnetic fields that occur preferentially on small length scales. Pneuman (1983) has suggested that the emergence of small scale flux tubes in the Sun can give rise to enhanced acceleration of the solar wind as a result of plasmoid acceleration (the melon seed mechanism). In this paper, we examine the Pneuman formalism to determine if it may shed some light on the process that drives mass loss from stars above the bump. Because we do not currently have detailed information for some of the relevant physical parameters, we are not yet able to derive a detailed model. Instead, our goal in this paper is to explore a proof of concept. Using parameters that are known to be plausible in cool giants, we find that the total mass loss rate from such stars can be replicated. Moreover, we find that the radial profile of the wind speed in such stars can be steep or shallow depending on the fraction of the mass loss which is contained in the plasmoids. This is consistent with empirical data which indicate that the velocity profiles of winds from cool giants range from shallow to steep.
128 - I. Araya , A. Christen , M. Cure 2021
Accurate mass-loss rates and terminal velocities from massive stars winds are essential to obtain synthetic spectra from radiative transfer calculations and to determine the evolutionary path of massive stars. From a theoretical point of view, analyt ical expressions for the wind parameters and velocity profile would have many advantages over numerical calculations that solve the complex non-linear set of hydrodynamic equations. In a previous work, we obtained an analytical description for the fast wind regime. Now, we propose an approximate expression for the line-force in terms of new parameters and obtain a velocity profile closed-form solution (in terms of the Lambert $W$ function) for the $delta$-slow regime. Using this analytical velocity profile, we were able to obtain the mass-loss rates based on the m-CAK theory. Moreover, we established a relation between this new set of line-force parameters with the known stellar and m-CAK line-force parameters. To this purpose, we calculated a grid of numerical hydrodynamical models and performed a multivariate multiple regression. The numerical and our descriptions lead to good agreement between their values.
[Abridged] Context: Radiation-driven mass loss plays a key role in the life-cycles of massive stars. However, basic predictions of such mass loss still suffer from significant quantitative uncertainties. Aims: We develop new radiation-driven, steady- state wind models for massive stars with hot surfaces, suitable for quantitative predictions of global parameters like mass-loss and wind-momentum rates. Methods: The simulations presented here are based on a self-consistent, iterative grid-solution to the spherically symmetric, steady-state equation of motion, using full NLTE radiative transfer solutions in the co-moving frame to derive the radiative acceleration. We do not rely on any distribution functions or parametrization for computation of the line force responsible for the wind driving. Results: In this first paper, we present models representing two prototypical O-stars in the Galaxy, one with a higher stellar mass M/Msun=59 and luminosity log10(L/Lsun)= 5.87 and one with a lower M/Msun= 27 and log10(L/Lsun)= 5.1. For these simulations, basic predictions for global mass-loss rates and velocity laws are given, and the influence from additional parameters like wind clumping and microturbulent speeds discussed. A key result is that our mass-loss rates are significantly lower than those predicted by the mass-loss recipes normally included in models of massive-star evolution. Conclusions: Our results support previous suggestions that Galactic O-star mass-loss rates may be overestimated in present-day stellar evolution models, and that new rates thus might be needed. Indeed, future papers in this series will incorporate our new models into such simulations of stellar evolution, extending the very first simulations presented here toward larger grids covering a range of metallicities, B supergiants across the bistability jump, and possibly also Wolf-Rayet stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا