ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Methods for the Automatic Detection of Errors in Manual Transcription

108   0   0.0 ( 0 )
 نشر من قبل Xiaofei Wang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quality of data plays an important role in most deep learning tasks. In the speech community, transcription of speech recording is indispensable. Since the transcription is usually generated artificially, automatically finding errors in manual transcriptions not only saves time and labors but benefits the performance of tasks that need the training process. Inspired by the success of hybrid automatic speech recognition using both language model and acoustic model, two approaches of automatic error detection in the transcriptions have been explored in this work. Previous study using a biased language model approach, relying on a strong transcription-dependent language model, has been reviewed. In this work, we propose a novel acoustic model based approach, focusing on the phonetic sequence of speech. Both methods have been evaluated on a completely real dataset, which was originally transcribed with errors and strictly corrected manually afterwards.



قيم البحث

اقرأ أيضاً

We investigate the efficiency of two very different spoken term detection approaches for transcription when the available data is insufficient to train a robust ASR system. This work is grounded in very low-resource language documentation scenario wh ere only few minutes of recording have been transcribed for a given language so far.Experiments on two oral languages show that a pretrained universal phone recognizer, fine-tuned with only a few minutes of target language speech, can be used for spoken term detection with a better overall performance than a dynamic time warping approach. In addition, we show that representing phoneme recognition ambiguity in a graph structure can further boost the recall while maintaining high precision in the low resource spoken term detection task.
Listening in noisy environments can be difficult even for individuals with a normal hearing thresholds. The speech signal can be masked by noise, which may lead to word misperceptions on the side of the listener, and overall difficulty to understand the message. To mitigate hearing difficulties on listeners, a co-operative speaker utilizes voice modulation strategies like Lombard speech to generate noise-robust utterances, and similar solutions have been developed for speech synthesis systems. In this work, we propose an alternate solution of choosing noise-robust lexical paraphrases to represent an intended meaning. Our results show that lexical paraphrases differ in their intelligibility in noise. We evaluate the intelligibility of synonyms in context and find that choosing a lexical unit that is less risky to be misheard than its synonym introduced an average gain in comprehension of 37% at SNR -5 dB and 21% at SNR 0 dB for babble noise.
Masked language models have revolutionized natural language processing systems in the past few years. A recently introduced generalization of masked language models called warped language models are trained to be more robust to the types of errors th at appear in automatic or manual transcriptions of spoken language by exposing the language model to the same types of errors during training. In this work we propose a novel approach that takes advantage of the robustness of warped language models to transcription noise for correcting transcriptions of spoken language. We show that our proposed approach is able to achieve up to 10% reduction in word error rates of both automatic and manual transcriptions of spoken language.
Much of the recent literature on automatic speech recognition (ASR) is taking an end-to-end approach. Unlike English where the writing system is closely related to sound, Chinese characters (Hanzi) represent meaning, not sound. We propose factoring a udio -> Hanzi into two sub-tasks: (1) audio -> Pinyin and (2) Pinyin -> Hanzi, where Pinyin is a system of phonetic transcription of standard Chinese. Factoring the audio -> Hanzi task in this way achieves 3.9% CER (character error rate) on the Aishell-1 corpus, the best result reported on this dataset so far.
Modeling code-switched speech is an important problem in automatic speech recognition (ASR). Labeled code-switched data are rare, so monolingual data are often used to model code-switched speech. These monolingual data may be more closely matched to one of the languages in the code-switch pair. We show that such asymmetry can bias prediction toward the better-matched language and degrade overall model performance. To address this issue, we propose a semi-supervised approach for code-switched ASR. We consider the case of English-Mandarin code-switching, and the problem of using monolingual data to build bilingual transcription models for annotation of unlabeled code-switched data. We first build multiple transcription models so that their individual predictions are variously biased toward either English or Mandarin. We then combine these biased transcriptions using confidence-based selection. This strategy generates a superior transcript for semi-supervised training, and obtains a 19% relative improvement compared to a semi-supervised system that relies on a transcription model built with only the best-matched monolingual data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا