ﻻ يوجد ملخص باللغة العربية
We propose, in a Ramsey interferometer, to cool the cavity field to its ground state, starting from a thermal distribution by a dispersive atom-field coupling followed by an atomic postselection. We also analyze the effect of the cavity and atomic losses. The proposed experiment can be realized with realistic parameters with high fidelity.
We propose to couple single atomic qubits to photons incident on a cavity containing an atomic ensemble of a different species that mediates the coupling via Rydberg interactions. Subject to a classical field and the cavity field, the ensemble forms
Efficient coupling of light to single atomic systems has gained considerable attention over the past decades. This development is driven by the continuous growth of quantum technologies. The efficient coupling of light and matter is an enabling techn
We report the cooling of an atomic ensemble with light, where each atom scatters only a single photon on average. This is a general method that does not require a cycling transition and can be applied to atoms or molecules which are magnetically trap
We propose a realizable experimental scheme to prepare a superposition of the vacuum and one-photon states using a typical cavity QED-setup. This is different from previous schemes, where the superposition state of the field is generated by resonant
A photon source based on postselection from entangled photon pairs produced by parametric frequency down-conversion is suggested. Its ability to provide good approximations of single-photon states is examined. Application of this source in quantum cr