ﻻ يوجد ملخص باللغة العربية
Approximate solutions of the Dirac equation are found for ultrarelativistic particles moving in a periodic potential, which depends only on one coordinate, transverse to the largest component of the momentum of the incoming particle. As an example we employ these solutions to calculate the radiation emission of positrons and electrons trapped in the planar potential found between the (110) planes in Silicon. This allows us to compare with the semi-classical method of Baier, Katkov and Strakhovenko, which includes the effect of spin and photon recoil, but neglects the quantization of the transverse motion. For high-energy electrons, the high-energy part of the angularly integrated photon energy spectrum calculated with the found wave functions differs from the corresponding one calculated with the semi-classical method. However, for lower particle energies it is found that the angularly integrated emission energy spectra obtained via the semi-classical method is in fairly good agreement with the full quantum calculation except that the positions of the harmonic peaks in photon energy and the photon emission angles are shifted.
We investigate the 2nd order process of two photons being emitted by a high-energy electron dressed in the strong background electric field found between the planes in a crystal. The strong crystalline field combined with ultra relativistic electrons
We investigate neutron propagation in a middle layer of a planar waveguide which is a tri-layer thin film. A narrow divergent microbeam emitted from the end face of the film is registered. The neutron channeling length is experimentally measured as a
Precise information about the temporal mode of optical states is crucial for optimizing their interaction efficiency between themselves and/or with matter in various quantum communication devices. Here we propose and experimentally demonstrate a meth
The usage of a Crystalline Undulator (CU) has been identified as a promising solution for generating powerful and monochromatic $gamma$-rays. A CU was fabricated at SSL through the grooving method, i.e., by the manufacturing of a series of periodical
Ionization of atoms and molecules by absorption of a light pulse results in electron wavepackets carrying information on the atomic or molecular structure as well as on the dynamics of the ionization process. These wavepackets can be described as a c