ﻻ يوجد ملخص باللغة العربية
Over the last dozen of years, the area of accelerating waves has made considerable advances not only in terms of fundamentals and experimental demonstrations but also in connection to a wide range of applications. Starting from the prototypical Airy beam that was proposed and observed in 2007, new families of accelerating waves have been identified in the paraxial and nonparaxial domains in space and/or time, with different methods developed to control at will their trajectory, amplitude, and beam width. Accelerating optical waves exhibit a number of highly desirable attributes. They move along a curved or accelerating trajectory while being resilient to perturbations (self-healing), and, are diffraction-free. It is because of these particular features that accelerating waves have been utilized in a variety of applications in the areas of filamentation, beam focusing, particle manipulation, biomedical imaging, plasmons, and material processing among others.
We employ the generic three-wave system, with the $chi ^{(2)}$ interaction between two components of the fundamental-frequency (FF) wave and second-harmonic (SH) one, to consider collisions of truncated Airy waves (TAWs) and three-wave solitons in a
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation-invariance. A lesser-explored strategy for achieving optical selfsimilar propagation exploits the modification of the spatio-temp
Computer audition (CA) has been demonstrated to be efficient in healthcare domains for speech-affecting disorders (e.g., autism spectrum, depression, or Parkinsons disease) and body sound-affecting abnormalities (e. g., abnormal bowel sounds, heart m
We present a review of the discrete dipole approximation (DDA), which is a general method to simulate light scattering by arbitrarily shaped particles. We put the method in historical context and discuss recent developments, taking the viewpoint of a
We investigate numerically the interactions of two in-phase and out-of-phase Airy beams and nonlinear accelerating beams in Kerr and saturable nonlinear media, in one transverse dimension. We find that bound and unbound soliton pairs, as well as sing