ﻻ يوجد ملخص باللغة العربية
The cross-correlation between fluctuations in the electron scattering optical depth $tau_{rm es}$ as probed by future Cosmic Microwave Background (CMB) experiments, and fluctuations in the 21cm differential brightness temperature $Delta T_{rm 21cm}$ as probed by ground-based radio interferometers, will trace the reionization history of the Universe. In particular, the $tau_{rm es}-$21cm cross-correlation should yield a determination of the characteristic bubble size distribution and ionization fraction as a function of redshift. When assuming that the cross-correlation signal is limited by instrumental noise rather than by foregrounds, we estimate its potential detectability by upcoming experiments. Specifically, the combination of HERA and Simons Observatory, CMB-S4 and PICO should yield a signal-to-noise ratio around 3 - 6, while and the exploitation of the SKA should increase it to 10-20. Finally, we have discussed how such levels of detectability can be affected when (simply modeled) 21cm foregrounds are present. For the most promising PICO$times$SKA configuration, an efficiency of foreground removal to a level of $7times 10^{-4}$ is needed to achieve a $5sigma$ detection of the cross-correlation signal; in addition, safe avoidance of foreground contamination in the line-of-sight Fourier modes above $0.03 ,h,rm Mpc^{-1}$ would guarantee a detection significance around $3sigma$.
Detection of the redshifted 21cm-line signal from neutral hydrogen in the intergalactic medium (IGM) during the Epoch of Reionization (EoR) is complicated by intense foregrounds such as galactic synchrotron and extragalactic radio galaxies. The 21cm-
Detecting $rm H_I$ 21cm line in the intergalactic medium (IGM) during the Epoch of Reionization (EoR) suffers from foreground contamination such as Galactic synchrotron and extragalactic radio sources. Cross-correlation between the 21cm line and Lyma
Cross-correlation between the redshifted 21 cm signal and Lyman-{alpha} emitters (LAEs) is powerful tool to probe the Epoch of Reionization (EoR). Although the cross-power spectrum (PS) has an advantage of not correlating with foregrounds much bright
Intensity mapping of the H I 21 cm line and the CO 2.61 mm line from the epoch of reionization has emerged as powerful, complementary, probes of the high-redshift Universe. However, both maps and their cross-correlation are dominated by foregrounds.
We compute the bispectra of the 21cm signal during the Epoch of Reionization for three different reionization scenarios that are based on a dark matter N-body simulation combined with a self-consistent, semi-numerical model of galaxy evolution and re