ترغب بنشر مسار تعليمي؟ اضغط هنا

Metabolomics in the Cloud: Scaling Computational Tools to Big Data

83   0   0.0 ( 0 )
 نشر من قبل Jianliang Gao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Metabolomics datasets are becoming increasingly large and complex, with multiple types of algorithms and workflows needed to process and analyse the data. A cloud infrastructure with portable software tools can provide much needed resources enabling faster processing of much larger datasets than would be possible at any individual lab. The PhenoMeNal project has developed such an infrastructure, allowing users to run analyses on local or commercial cloud platforms. We have examined the computational scaling behaviour of the PhenoMeNal platform using four different implementations across 1-1000 virtual CPUs using two common metabolomics tools. Results: Our results show that data which takes up to 4 days to process on a standard desktop computer can be processed in just 10 min on the largest cluster. Improved runtimes come at the cost of decreased efficiency, with all platforms falling below 80% efficiency above approximately 1/3 of the maximum number of vCPUs. An economic analysis revealed that running on large scale cloud platforms is cost effective compared to traditional desktop systems. Conclusions: Overall, cloud implementations of PhenoMeNal show excellent scalability for standard metabolomics computing tasks on a range of platforms, making them a compelling choice for research computing in metabolomics.



قيم البحث

اقرأ أيضاً

Big data is gaining overwhelming attention since the last decade. Almost all the fields of science and technology have experienced a considerable impact from it. The cloud computing paradigm has been targeted for big data processing and mining in a m ore efficient manner using the plethora of resources available from computing nodes to efficient storage. Cloud data mining introduces the concept of performing data mining and analytics of huge data in the cloud availing the cloud resources. But can we do better? Yes, of course! The main contribution of this chapter is the identification of four game-changing technologies for the acceleration of computing and analysis of data mining tasks in the cloud. Graphics Processing Units can be used to further accelerate the mining or analytic process, which is called GPU accelerated analytics. Further, Approximate Computing can also be introduced in big data analytics for bringing efficacy in the process by reducing time and energy and hence facilitating greenness in the entire computing process. Quantum Computing is a paradigm that is gaining pace in recent times which can also facilitate efficient and fast big data analytics in very little time. We have surveyed these three technologies and established their importance in big data mining with a holistic architecture by combining these three game-changers with the perspective of big data. We have also talked about another future technology, i.e., Neural Processing Units or Neural accelerators for researchers to explore the possibilities. A brief explanation of big data and cloud data mining concepts are also presented here.
127 - Yuankun Fu , Fengguang Song 2020
This chapter introduces the state-of-the-art in the emerging area of combining High Performance Computing (HPC) with Big Data Analysis. To understand the new area, the chapter first surveys the existing approaches to integrating HPC with Big Data. Ne xt, the chapter introduces several optimization solutions that focus on how to minimize the data transfer time from computation-intensive applications to analysis-intensive applications as well as minimizing the end-to-end time-to-solution. The solutions utilize SDN to adaptively use both high speed interconnect network and high performance parallel file systems to optimize the application performance. A computational framework called DataBroker is designed and developed to enable a tight integration of HPC with data analysis. Multiple types of experiments have been conducted to show different performance issues in both message passing and parallel file systems and to verify the effectiveness of the proposed research approaches.
In this work we present kiwiPy, a Python library designed to support robust message based communication for high-throughput, big-data, applications while being general enough to be useful wherever high-volumes of messages need to be communicated in a predictable manner. KiwiPy relies on the RabbitMQ protocol, an industry standard message broker, while providing a simple and intuitive interface that can be used in both multithreaded and coroutine based applications. To demonstrate some of kiwiPys functionality we give examples from AiiDA, a high-throughput simulation platform, where kiwiPy is used as a key component of the workflow engine.
With the emergence of the big data age, the issue of how to obtain valuable knowledge from a dataset efficiently and accurately has attracted increasingly attention from both academia and industry. This paper presents a Parallel Random Forest (PRF) a lgorithm for big data on the Apache Spark platform. The PRF algorithm is optimized based on a hybrid approach combining data-parallel and task-parallel optimization. From the perspective of data-parallel optimization, a vertical data-partitioning method is performed to reduce the data communication cost effectively, and a data-multiplexing method is performed is performed to allow the training dataset to be reused and diminish the volume of data. From the perspective of task-parallel optimization, a dual parallel approach is carried out in the training process of RF, and a task Directed Acyclic Graph (DAG) is created according to the parallel training process of PRF and the dependence of the Resilient Distributed Datasets (RDD) objects. Then, different task schedulers are invoked for the tasks in the DAG. Moreover, to improve the algorithms accuracy for large, high-dimensional, and noisy data, we perform a dimension-reduction approach in the training process and a weighted voting approach in the prediction process prior to parallelization. Extensive experimental results indicate the superiority and notable advantages of the PRF algorithm over the relevant algorithms implemented by Spark MLlib and other studies in terms of the classification accuracy, performance, and scalability.
Cloud-based enterprise search services (e.g., Amazon Kendra) are enchanting to big data owners by providing them with convenient search solutions over their enterprise big datasets. However, individuals and businesses that deal with confidential big data (eg, credential documents) are reluctant to fully embrace such services, due to valid concerns about data privacy. Solutions based on client-side encryption have been explored to mitigate privacy concerns. Nonetheless, such solutions hinder data processing, specifically clustering, which is pivotal in dealing with different forms of big data. For instance, clustering is critical to limit the search space and perform real-time search operations on big datasets. To overcome the hindrance in clustering encrypted big data, we propose privacy-preserving clustering schemes for three forms of unstructured encrypted big datasets, namely static, semi-dynamic, and dynamic datasets. To preserve data privacy, the proposed clustering schemes function based on statistical characteristics of the data and determine (A) the suitable number of clusters and (B) appropriate content for each cluster. Experimental results obtained from evaluating the clustering schemes on three different datasets demonstrate between 30% to 60% improvement on the clusters coherency compared to other clustering schemes for encrypted data. Employing the clustering schemes in a privacy-preserving enterprise search system decreases its search time by up to 78%, while increases the search accuracy by up to 35%.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا