ترغب بنشر مسار تعليمي؟ اضغط هنا

Axion resonances in binary pulsar systems

252   0   0.0 ( 0 )
 نشر من قبل Evgeni Grishin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the extent to which resonances between an oscillating background of ultra-light axion and a binary Keplerian system can affect the motion of the latter. These resonances lead to perturbations in the instantaneous time-of-arrivals, and to secular variations in the period of the binary. While the secular changes at exact resonance have recently been explored, the instantaneous effects have been overlooked. In this paper, we examine the latter using N-body simulations including the external oscillatory forcing induced by the axion background. While the secular effects are restricted to a narrow width near the resonance, the instantaneous changes, albeit strongest close to resonances, are apparent for wide range of configurations. We compute the signal-to-noise ratio (SNR) as a function of semi-major axis for a detection of axion oscillations through the R{o} mer delay. The latter can be extracted from the time-of-arrivals of binary pulsars. The SNR broadly increases with increasing binary eccentricity in agreement with the secular expectation. However, we find that it differs significantly from the scaling a^{5/2} around the lowest orders of resonance. Future observations could probe these effects away from resonances and, therefore, constrain a much broader range of axion masses provided that binary pulsar systems are found near the central region of our Galaxy, and that the time-or-arrival measurement accuracy reaches < 10 ns



قيم البحث

اقرأ أيضاً

121 - John Ellis , Marek Lewicki 2020
Pulsar timing data used to provide upper limits on a possible stochastic gravitational wave background (SGWB). However, the NANOGrav Collaboration has recently reported strong evidence for a stochastic common-spectrum process, which we interpret as a SGWB in the framework of cosmic strings. The possible NANOGrav signal would correspond to a string tension $Gmu in (4 times 10^{-11}, 10^{-10}) $ at the 68% confidence level, with a different frequency dependence from supermassive black hole mergers. The SGWB produced by cosmic strings with such values of $Gmu$ would be beyond the reach of LIGO, but could be measured by other planned and proposed detectors such as SKA, LISA, TianQin, AION-1km, AEDGE, Einstein Telescope and Cosmic Explorer.
In Einsteins general relativity, gravity is mediated by a massless spin-2 metric field, and its extension to include a mass for the graviton has profound implication for gravitation and cosmology. In 2002, Finn and Sutton used the gravitational-wave (GW) back-reaction in binary pulsars, and provided the first bound on the mass of graviton. Here we provide an improved analysis using 9 well-timed binary pulsars with a phenomenological treatment. First, individual mass bounds from each pulsar are obtained in the frequentist approach with the help of an ordering principle. The best upper limit on the graviton mass, $m_{g}<3.5times10^{-20} , {rm eV}/c^{2}$ (90% C.L.), comes from the Hulse-Taylor pulsar PSR B1913+16. Then, we combine individual pulsars using the Bayesian theorem, and get $m_{g}<5.2times10^{-21} , {rm eV}/c^{2}$ (90% C.L.) with a uniform prior for $ln m_g$. This limit improves the Finn-Sutton limit by a factor of more than 10. Though it is not as tight as those from GWs and the Solar System, it provides an independent and complementary bound from a dynamic regime.
139 - Takamitsu Tanaka 2011
Pulsar timing arrays (PTAs) are expected to detect gravitational waves (GWs) from individual low-redshift (z<1.5) compact supermassive (M>10^9 Msun) black hole (SMBH) binaries with orbital periods of approx. 0.1 - 10 yrs. Identifying the electromagne tic (EM) counterparts of these sources would provide confirmation of putative direct detections of GWs, present a rare opportunity to study the environments of compact SMBH binaries, and could enable the use of these sources as standard sirens for cosmology. Here we consider the feasibility of such an EM identification. We show that because the host galaxies of resolved PTA sources are expected to be exceptionally massive and rare, it should be possible to find unique hosts of resolved sources out to redshift z=0.2. At higher redshifts, the PTA error boxes are larger, and may contain as many as 100 massive-galaxy interlopers. The number of candidates, however, remains tractable for follow-up searches in upcoming wide-field EM surveys. We develop a toy model to characterize the dynamics and the thermal emission from a geometrically thin, gaseous disc accreting onto a PTA-source SMBH binary. Our model predicts that at optical and infrared frequencies, the source should appear similar to a typical luminous active galactic nucleus (AGN). However, owing to the evacuation of the accretion flow by the binarys tidal torques, the source might have an unusually low soft X-ray luminosity and weak UV and broad optical emission lines, as compared to an AGN powered by a single SMBH with the same total mass. For sources near z=1, the decrement in the rest-frame UV should be observable as an extremely red optical color. These properties would make the PTA sources stand out among optically luminous AGN, and could allow their unique identification.
Millisecond pulsars, old neutron stars spun-up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such recycled rotation-powered pulsars have been detected by their spin-modu lated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.
Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems will modulate the arrival times of pulses from radio puls ars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic amplitude of this background, $A_{rm c,yr}$, to be < $1.0times10^{-15}$ with 95% confidence. This limit excludes predicted ranges for $A_{rm c,yr}$ from current models with 91-99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments, and that higher-cadence and shorter-wavelength observations would result in an increased sensitivity to gravitational waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا