ترغب بنشر مسار تعليمي؟ اضغط هنا

The Search For Leakage-free Entangling Fibonacci Braiding Gates

133   0   0.0 ( 0 )
 نشر من قبل Shawn X. Cui
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

It is an open question if there are leakage-free entangling Fibonacci braiding gates. We provide evidence to the conjecture for the negative in this paper. We also found a much simpler protocol to generate approximately leakage-free entangling Fibonacci braiding gates than existing algorithms in the literature.

قيم البحث

اقرأ أيضاً

Not all quantum protocols require entanglement to outperform their classical alternatives. The nonclassical correlations that lead to this quantum advantage are conjectured to be captured by quantum discord. Here we demonstrate that discord can be ex plicitly used as a resource: certifying untrusted entangling gates without generating entanglement at any stage. We implement our protocol in the single-photon regime, and show its success in the presence of high levels of noise and imperfect gate operations. Our technique offers a practical method for benchmarking entangling gates in physical architectures in which only highly-mixed states are available.
We present a general theory for laser-free entangling gates with trapped-ion hyperfine qubits, using either static or oscillating magnetic-field gradients combined with a pair of uniform microwave fields symmetrically detuned about the qubit frequenc y. By transforming into a `bichromatic interaction picture, we show that either ${hat{sigma}_{phi}otimeshat{sigma}_{phi}}$ or ${hat{sigma}_{z}otimeshat{sigma}_{z}}$ geometric phase gates can be performed. The gate basis is determined by selecting the microwave detuning. The driving parameters can be tuned to provide intrinsic dynamical decoupling from qubit frequency fluctuations. The ${hat{sigma}_{z}otimeshat{sigma}_{z}}$ gates can be implemented in a novel manner which eases experimental constraints. We present numerical simulations of gate fidelities assuming realistic parameters.
Efficiently entangling pairs of qubits is essential to fully harness the power of quantum computing. Here, we devise an exact protocol that simultaneously entangles arbitrary pairs of qubits on a trapped-ion quantum computer. The protocol requires cl assical computational resources polynomial in the system size, and very little overhead in the quantum control compared to a single-pair case. We demonstrate an exponential improvement in both classical and quantum resources over the current state of the art. We implement the protocol on a software-defined trapped-ion quantum computer, where we reconfigure the quantum computer architecture on demand. Together with the all-to-all connectivity available in trapped-ion quantum computers, our results establish that trapped ions are a prime candidate for a scalable quantum computing platform with minimal quantum latency.
Optimal control theory is a versatile tool that presents a route to significantly improving figures of merit for quantum information tasks. We combine it here with the geometric theory for local equivalence classes of two-qubit operations to derive a n optimization algorithm that determines the best entangling two-qubit gate for a given physical setting. We demonstrate the power of this approach for trapped polar molecules and neutral atoms.
We study the entangling properties of multipartite unitary gates with respect to the measure of entanglement called one-tangle. Putting special emphasis on the case of three parties, we derive an analytical expression for the entangling power of an $ n$-partite gate as an explicit function of the gate, linking the entangling power of gates acting on $n$-partite Hilbert space of dimension $d_1 ldots d_n$ to the entanglement of pure states in the Hilbert space of dimension $(d_1 ldots d_n)^2$. Furthermore, we evaluate its mean value averaged over the unitary and orthogonal groups, analyze the maximal entangling power and relate it to the absolutely maximally entangled (AME) states of a system with $2n$ parties. Finally, we provide a detailed analysis of the entangling properties of three-qubit unitary and orthogonal gates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا