ﻻ يوجد ملخص باللغة العربية
Projective modules play an important role in the study of the category of modules over rings and in the characterization of various classes of rings. Several characterizations of projective objects which are equivalent for modules over rings are not necessarily equivalent for semimodules over an arbitrary semiring. We study several of these notions, in particular the e-projective semimodules introduced by the first author using his new notion of exact sequences of semimodules. As pushouts of semimodules play an important role in some of our proofs, we investigate them and give a constructive proof of their existence in a way that proved be very helpful.
Injective modules play an important role in characterizing different classes of rings (e.g. Noetherian rings, semisimple rings). Some semirings have no non-zero injective semimodules (e.g. the semiring of non-negative integers). In this paper, we stu
In this paper, we introduce and study e-injective semimodules, in particular over additively idempotent semirings. We completely characterize semirings all of whose semimodules are e-injective, describe semirings all of whose projective semimodules a
Flat modules play an important role in the study of the category of modules over rings and in the characterization of some classes of rings. We study the e-flatness for semimodules introduced by the first author using his new notion of exact sequence
In this paper, we introduce and study V- and CI-semirings---semirings all of whose simple and cyclic, respectively, semimodules are injective. We describe V-semirings for some classes of semirings and establish some fundamental properties of V-semiri
We investigate (twisted) rings of differential operators on the resolution of singularities of a particular irreducible component of the (Zarisky) closure of the minimal orbit $bar O_{mathrm{min}}$ of $mathfrak{sp}_{2n}$, intersected with the Borel s