ﻻ يوجد ملخص باللغة العربية
We study the electron and spin transport in a van der Waals system formed by one layer with strong spin-orbit coupling and a second layer without spin-orbit coupling, in the regime when the interlayer tunneling is random. We find that in the layer without intrinsic spin-orbit coupling spin-charge coupled transport can be induced by two distinct mechanisms. First, the gapless diffusion modes of the two isolated layers hybridize in the presence of tunneling, which constitutes a source of spin-charge coupled transport in the second layer. Second, the random tunneling introduces spin-orbit coupling in the effective disorder-averaged single-particle Hamiltonian of the second layer. This results in non-trivial spin transport and, for sufficiently strong tunneling, in spin-charge coupling. As an example, we consider a van der Waals system formed by a two-dimensional electron gas (2DEG)--such as graphene--and the surface of a topological insulator (TI) and show that the proximity of the TI induces a coupling of the spin and charge transport in the 2DEG. In addition, we show that such coupling can be tuned by varying the doping of the TIs surface. We then obtain, for a simple geometry, the current-induced non-equilibrium spin accumulation (Edelstein effect) caused in the 2DEG by the coupling of charge and spin transport.
Magnetic multilayer devices that exploit magnetoresistance are the backbone of magnetic sensing and data storage technologies. Here we report novel multiple-spin-filter magnetic tunnel junctions (sf-MTJs) based on van der Waals (vdW) heterostructures
In this article we review recent work on van der Waals (vdW) systems in which at least one of the components has strong spin-orbit coupling. We focus on a selection of vdW heterostructures to exemplify the type of interesting electronic properties th
We develop a theory for interlayer tunneling in van der Waals heterostructures driven under a strong electromagnetic field, using graphene/{it h}-BN/graphene as a paradigmatic example. Our theory predicts that strong anti-resonances appear at bias vo
Large area van der Waals (vdW) thin films are assembled materials consisting of a network of randomly stacked nanosheets. The multi-scale structure and the two-dimensional nature of the building block mean that interfaces naturally play a crucial rol
Strong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS3, a van derWaals antiferromagnet, from our study of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray a