ترغب بنشر مسار تعليمي؟ اضغط هنا

Invariant Theory and Orientational Phase Transitions

88   0   0.0 ( 0 )
 نشر من قبل Joseph Rudnick
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Landau theory of phase transitions has been productively applied to phase transitions that involve rotational symmetry breaking, such as the transition from an isotropic fluid to a nematic liquid crystal. It even can be applied to the orientational symmetry breaking of simple atomic or molecular clusters that are not true phase transitions. In this paper we address fundamental problems that arise with the Landau theory when it is applied to rotational symmetry breaking transitions of more complex particle clusters that involve order parameters characterized by larger values of the $l$ index of the dominant spherical harmonic that describes the broken symmetry state. The problems are twofold. First, one may encounter a thermodynamic instability of the expected ground state with respect to states with lower symmetry. A second problem concerns the proliferation of quartic invariants that may or may not be physical. We show that the combination of a geometrical method based on the analysis of the space of invariants, developed by Kim to study symmetry breaking of the Higgs potential, with modern visualization tools provides a resolution to these problems. The approach is applied to the outcome of numerical simulations of particle ordering on a spherical surface and to the ordering of protein shells.



قيم البحث

اقرأ أيضاً

We present detailed systematic studies of structural transformations in thin liquid crystal films with the smectic-C to hexatic phase transition. For the first time all possible structures reported in the literature are observed for one material (5 O .6) at the variation of temperature and thickness. In unusual modulated structures the equilibrium period of stripes is twice with respect to the domain size. We interpret these patterns in the frame work of phenomenological Landau type theory, as equilibrium phenomena produced by a natural geometric frustration in a system having spontaneous splay distortion.
We present a generalized Landau-Brazovskii free energy for the solidification of chiral molecules on a spherical surface in the context of the assembly of viral shells. We encounter two types of icosahedral solidification transitions. The first type is a conventional first-order phase transition from the uniform to the icosahedral state. It can be described by a single icosahedral spherical harmonic of even $l$. The chiral pseudo-scalar term in the free energy creates secondary terms with chiral character but it does not affect the thermodynamics of the transition. The second type, associated with icosahedral spherical harmonics with odd $l$, is anomalous. Pure odd $l$ icosahedral states are unstable but stability is recovered if admixture with the neighboring $l+1$ icosahedral spherical harmonic is included, generated by the non-linear terms. This is in conflict with the principle of Landau theory that symmetry-breaking transitions are characterized by only a textit{single} irreducible representation of the symmetry group of the uniform phase and we argue that this principle should be removed from Landau theory. The chiral term now directly affects the transition because it lifts the degeneracy between two isomeric mixed-$l$ icosahedral states. A direct transition is possible only over a limited range of parameters. Outside this range, non-icosahedral states intervene. For the important case of capsid assembly dominated by $l=15$, the intervening states are found to be based on octahedral symmetry.
We introduce the spatial correlation function $C_Q(r)$ and temporal autocorrelation function $C_Q(t)$ of the local tetrahedral order parameter $Qequiv Q(r,t)$. Using computer simulations of the TIP5P model of water, we investigate $C_Q(r)$ in a broad region of the phase diagram. First we show that $C_Q(r)$ displays anticorrelation at $rapprox 0.32$nm at high temperatures $T>T_Wapprox 250$ K, which changes to positive correlation below the Widom line $T_W$. Further we find that at low temperatures $C_Q(t)$ exhibits a two-step temporal decay similar to the self intermediate scattering function, and that the corresponding correlation time $tau_Q$ displays a dynamic crossover from non-Arrhenius behavior for $T>T_W$ to Arrhenius behavior for $T<T_W$. Finally, we define an orientational entropy $S_Q$ associated with the {it local} orientational order of water molecules, and show that $tau_Q$ can be extracted from $S_Q$ using an analog of the Adam-Gibbs relation.
131 - Kenji Yonemitsu 2005
Theories of photoinduced phase transitions have developed along with the progress in experimental studies, especially concerning their nonlinear characters and transition dynamics. At an early stage, paths from photoinduced local structural distortio ns to global ones are explained in classical statistical models. Their dynamics are governed by transition probabilities and inevitably stochastic, but they were sufficient to describe coarse-grained time evolutions. Recently, however, a variety of dynamics including ultrafast ones are observed in different electronic states. They are explained in relevant electronic models. In particular, a coherent lattice oscillation and coherent motion of a macroscopic domain boundary need appropriate interactions among electrons and lattice displacements. Furthermore, some transitions proceed almost in one direction, which can be explained by considering relevant electronic processes. We describe the history of theories of photoinduced phase transitions and discuss a future perspective.
Active matter is not only indispensable to our understanding of diverse biological processes, but also provides a fertile ground for discovering novel physics. Many emergent properties impossible for equilibrium systems have been demonstrated in acti ve systems. These emergent features include motility-induced phase separation, long-ranged ordered (collective motion) phase in two dimensions, and order-disorder phase co-existences (banding and reverse-banding regimes). Here, we unify these diverse phase transitions and phase co-existences into a single formulation based on generic hydrodynamic equations for active fluids. We also reveal a novel co-moving co-existence phase and a putative novel critical point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا