ﻻ يوجد ملخص باللغة العربية
Staring from the kicked rotator as a paradigm for a system exhibiting classical chaos, we discuss the role of quantum coherence resulting in dynamical localization in the kicked quantum rotator. In this context, the disorder-induced Anderson localization is also discussed. Localization in interacting, quantum many-body systems (many-body localization) may also occur in the absence of disorder, and a practical way to identify its occurrence is demonstrated for an interacting spin chain.
Characterizing states of matter through the lens of their ergodic properties is a fascinating new direction of research. In the quantum realm, the many-body localization (MBL) was proposed to be the paradigmatic ergodicity breaking phenomenon, which
Linking thermodynamic variables like temperature $T$ and the measure of chaos, the Lyapunov exponents $lambda$, is a question of fundamental importance in many-body systems. By using nonlinear fluid equations in one and three dimensions, we prove tha
We study many-body chaos in a (2+1)D relativistic scalar field theory at high temperatures in the classical statistical approximation, which captures the quantum critical regime and the thermal phase transition from an ordered to a disordered phase.
We examine the many-body localization (MBL) phase transition in one-dimensional quantum systems with quenched randomness and short-range interactions. Following recent works, we use a strong-randomness renormalization group (RG) approach where the ph
Recent years have seen an increasing interest in quantum chaos and related aspects of spatially extended systems, such as spin chains. However, the results are strongly system dependent, generic approaches suggest the presence of many-body localizati