ﻻ يوجد ملخص باللغة العربية
We show that the Olami-Feder-Christensen model exhibits an effective ergodicity breaking transition as the noise is varied. Above the critical noise, the average stress on each site converges to the global average. Below the critical noise, the stress on individual sites becomes trapped in different limit cycles. We use ideas from the study of dynamical systems and compute recurrence plots and the recurrence rate. We identify the order parameter as the recurrence rate averaged over all sites and find numerical evidence that the transition can be characterized by exponents that are consistent with hyperscaling.
Spontaneous symmetry breaking (SSB) is a key concept in physics that for decades has played a crucial role in the description of many physical phenomena in a large number of different areas, like particle physics, cosmology, and condensed-matter phys
Prediction in complex systems at criticality is believed to be very difficult, if not impossible. Of particular interest is whether earthquakes, whose distribution follows a power law (Gutenberg-Richter) distribution, are in principle unpredictable.
We theoretically explore quantum correlation properties of a dissipative Bose-Hubbard dimer in presence of a coherent drive. In particular, we focus on the regime where the semiclassical theory predicts a bifurcation with a spontaneous spatial symmet
By example of the nonlinear Kerr-mode driven by a laser, we show that hysteresis phenomena in systems featuring a driven-dissipative phase transition (DPT) can be accurately described in terms of just two collective, dissipative Liouvillian eigenmode
We show that the structural properties and phase behavior of a self-avoiding polymer chain on adhesive substrate, subject to pulling at the chain end, can be obtained by means of a Grand Canonical Ensemble (GCE) approach. We derive analytical express