ترغب بنشر مسار تعليمي؟ اضغط هنا

Long valley lifetime of dark excitons in single-layer WSe2

107   0   0.0 ( 0 )
 نشر من قبل Yanhao Tang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single-layer transition metal dichalcogenides (TMDs) provide a promising material system to explore the electrons valley degree of freedom as a quantum information carrier. The valley degree of freedom in single-layer TMDs can be directly accessed by means of optical excitation. The rapid valley relaxation of optically excited electron-hole pairs (excitons) through the long-range electron-hole exchange interaction, however, has been a major roadblock. Theoretically such a valley relaxation does not occur for the recently discovered dark excitons, suggesting a potential route for long valley lifetimes. Here we investigate the valley dynamics of dark excitons in single-layer WSe2 by time-resolved photoluminescence spectroscopy. We develop a waveguide-based method to enable the detection of the dark exciton emission, which involves spin-forbidden optical transitions with an out-of-plane dipole moment. The valley degree of freedom of dark excitons is accessed through the valley-dependent Zeeman effect under an out-of-plane magnetic field. We find a short valley lifetime for the dark neutral exciton, likely due to the short-range electron-hole exchange, but long valley lifetimes exceeding several nanoseconds for dark charged excitons.

قيم البحث

اقرأ أيضاً

Two-dimensional (2D) materials, such as graphene1, boron nitride2, and transition metal dichalcogenides (TMDs)3-5, have sparked wide interest in both device physics and technological applications at the atomic monolayer limit. These 2D monolayers can be stacked together with precise control to form novel van der Waals heterostructures for new functionalities2,6-9. One highly coveted but yet to be realized heterostructure is that of differing monolayer TMDs with type II band alignment10-12. Their application potential hinges on the fabrication, understanding, and control of bonded monolayers, with bound electrons and holes localized in individual monolayers, i.e. interlayer excitons. Here, we report the first observation of interlayer excitons in monolayer MoSe2-WSe2 heterostructures by both photoluminescence and photoluminescence excitation spectroscopy. The energy and luminescence intensity of interlayer excitons are highly tunable by an applied vertical gate voltage, implying electrical control of the heterojunction band-alignment. Using time resolved photoluminescence, we find that the interlayer exciton is long-lived with a lifetime of about 1.8 ns, an order of magnitude longer than intralayer excitons13-16. Our work demonstrates the ability to optically pump interlayer electric polarization and provokes the immediate exploration of interlayer excitons for condensation phenomena, as well as new applications in 2D light-emitting diodes, lasers, and photovoltaic devices.
The presence of two spin-split valleys in monolayer (1L) transition metal dichalcogenide (TMD) semiconductors supports versatile exciton species classified by their spin and valley quantum numbers. While the spin-0 intravalley exciton, known as the b right exciton, is readily observable, other types of excitons, such as the spin-1 intravalley (spin-dark) and spin-0 intervalley (momentum-dark) excitons, are more difficult to access. Here we develop a waveguide coupled 1L tungsten diselenide (WSe2) device to probe these exciton species. In particular, TM coupling to the atomic layers out-of-plane dipole moments enabled us to not only efficiently collect, but also resonantly populate the spin-1 dark excitons, promising for developing devices with long valley lifetimes. Our work reveals several upconversion processes that bring out an intricate coupling network linking spin-0 and spin-1 intra- and inter-valley excitons, demonstrating that intervalley scattering and spin-flip are very common processes in the atomic layer. These experimental results deepen our understanding of tungsten diselenide exciton physics and illustrate that planar photonic devices are capable of harnessing versatile exciton species in TMD semiconductors.
We observe a set of three replica luminescent peaks at ~21.4 meV below the dark exciton, negative and positive dark trions (or exciton-polarons) in monolayer WSe2. The replica redshift energy matches the energy of the zone-center E-mode optical phono ns. The phonon replicas exhibit parallel gate dependence and same g-factors as the dark excitonic states, but follow the valley selection rules of the bright excitonic states. While the dark states exhibit out-of-plane transition dipole and valley-independent linearly polarized emission in the in-plane directions, their phonon replicas exhibit in-plane transition dipole and valley-dependent circularly polarized emission in the out-of-plane directions. Our results and symmetry analysis show that the K-valley dark exciton decays into a left-handed chiral phonon and a right-handed photon, whereas the K-valley dark exciton decays into a right-handed chiral phonon and a left-handed photon. Such valley selection rules of chiral phonon replicas can be utilized to identify the valleys of the dark excitonic states and explore their chiral interactions with phonons.
Manipulation of spin and valley degrees of freedom is a key step towards realizing novel quantum technologies, for which atomically thin transition metal dichalcogenides (TMDCs) have been established as promising candidates. In monolayer TMDCs, the l ack of inversion symmetry gives rise to a spin-valley correlation of the band structure allowing for valley-selective electronic excitation with circularly polarized light. Here we show that, even in centrosymmetric samples of 2H-WSe2, circularly polarized light can generate spin-, valley- and layer-polarized excited states in the conduction band. Employing time- and angle-resolved photoemission spectroscopy (trARPES) with spin-selective excitation, the dynamics of valley and layer pseudospins of the excited carriers are investigated. Complementary time-dependent density functional theory (TDDFT) calculations of the excited state populations reveal a strong circular dichroism of the spin-, valley- and layer-polarizations and a pronounced 2D character of the excited states in the K valleys. We observe scattering of carriers towards the global minimum of the conduction band on a sub-100 femtosecond timescale to states with three-dimensional character facilitating inter-layer charge transfer. Our results establish the optical control of coupled spin-, valley- and layer-polarized states in centrosymmetric materials and suggest the suitability of TMDC multilayer materials for valleytronic and spintronic device concepts.
2D materials with valley-related multiple Hall effect are both fundamentally intriguing and practically appealing to explore novel phenomena and applications, but have been largely overlooked up to date. Here, using first-principles calculations, we present that valley related multiple Hall effect can exist in single-layer VSi2P4. We identify single-layer VSi2P4 as a ferromagnetic semiconductor with out-of-plane magnetization and valley physics. Arising from the joint effect of inversion symmetry breaking and time reversal symmetry breaking, the exotic spontaneous valley polarization occurs in single-layer VSi2P4, thus facilitating the observation of anomalous valley Hall effect. Moreover, under external strain, band inversion can occur at only one of the valleys of single-layer VSi2P4, enabling the long-sought valley-polarized quantum anomalous Hall effect, and meanwhile the anomalous valley Hall effect is well preserved.. Our work not only enriches the research on valley-related multiple Hall effect, but also opens a new avenue for exploring valley-polarized quantum anomalous Hall effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا