ﻻ يوجد ملخص باللغة العربية
We consider large Hermitian matrices whose entries are defined by evaluating the exponential function along orbits of the skew-shift $binom{j}{2} omega+jy+x mod 1$ for irrational $omega$. We prove that the eigenvalue distribution of these matrices converges to the corresponding distribution from random matrix theory on the global scale, namely, the Wigner semicircle law for square matrices and the Marchenko-Pastur law for rectangular matrices. The results evidence the quasi-random nature of the skew-shift dynamics which was observed in other contexts by Bourgain-Goldstein-Schlag and Rudnick-Sarnak-Zaharescu.
We consider the spectral and dynamical properties of one-dimensional quantum walks placed into homogenous electric fields according to a discrete version of the minimal coupling principle. We show that for all irrational fields the absolutely continu
It is known that a one-dimensional quantum particle is localized when subjected to an arbitrarily weak random potential. It is conjectured that localization also occurs for an arbitrarily weak potential generated from the nonlinear skew-shift dynamic
We apply the method of skew-orthogonal polynomials (SOP) in the complex plane to asymmetric random matrices with real elements, belonging to two different classes. Explicit integral representations valid for arbitrary weight functions are derived for
We study the joint probability density of the eigenvalues of a product of rectangular real, complex or quaternion random matrices in a unified way. The random matrices are distributed according to arbitrary probability densities, whose only restricti
The purpose of this article is to study the eigenvalues $u_1^{, t}=e^{ittheta_1},dots,u_N^{,t}=e^{ittheta_N}$ of $U^t$ where $U$ is a large $Ntimes N$ random unitary matrix and $t>0$. In particular we are interested in the typical times $t$ for which