ﻻ يوجد ملخص باللغة العربية
Heterostructures of transition metal oxides (TMO) perovskites represent an ideal platform to explore exotic phenomena involving the complex interplay between the spin, charge, orbital and lattice degrees of freedom available in these compounds. At the interface between such materials, this interplay can lead to phenomena that are present in none of the original constituents such as the formation of the interfacial 2D electron system (2DES) discovered at the LAO3/STO3 (LAO/STO) interface. In samples prepared by growing a LAO layer onto a STO substrate, the 2DES is confined in a band bending potential well, whose width is set by the interface charge density and the STO dielectric properties, and determines the electronic band structure. Growing LAO (2 nm) /STO (x nm)/LAO (2 nm) heterostructures on STO substrates allows us to control the extension of the confining potential of the top 2DES via the thickness of the STO layer. In such samples, we explore the dependence of the electronic structure on the width of the confining potential using soft X-ray ARPES combined with ab-initio calculations. The results indicate that varying the thickness of the STO film modifies the quantization of the 3d t2g bands and, interestingly, redistributes the charge between the dxy and dxz/dyz bands.
The unusual electronic properties of graphene, which are a direct consequence of its two-dimensional (2D) honeycomb lattice, have attracted a great deal of attention in recent years. Creation of artificial lattices that recreate graphenes honeycomb t
The quasi two-dimensional Mott insulator $alpha$-RuCl$_3$ is proximate to the sought-after Kitaev quantum spin liquid (QSL). In a layer of $alpha$-RuCl$_3$ on graphene the dominant Kitaev exchange is further enhanced by strain. Recently, quantum osci
Heavy fermion systems represent one of the paradigmatic strongly correlated states of matter. They have been used as a platform for investigating exotic behavior ranging from quantum criticality and non-Fermi liquid behavior to unconventional topolog
Magnetic monopoles are hypothesised elementary particles connected by Dirac strings that behave like infinitely thin solenoids. Despite decades of searches, free magnetic monopoles and their Dirac strings have eluded experimental detection, although
As a foundation of condensed matter physics, the normal states of most metals are successfully described by Landau Fermi liquid theory with quasi-particles and their Fermi surfaces (FSs). The FSs sometimes become deformed or gapped at low temperature