ترغب بنشر مسار تعليمي؟ اضغط هنا

HERBS I: Metallicity and alpha enhancement along the Galactic bulge minor axis

126   0   0.0 ( 0 )
 نشر من قبل Ly Duong
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To better understand the origin and evolution of the Milky Way bulge, we have conducted a survey of bulge red giant branch and clump stars using the HERMES spectrograph on the Anglo-Australian Telescope. We targeted ARGOS survey stars with pre-determined bulge memberships, covering the full metallicity distribution function. The spectra have signal-to-noise ratios comparable to, and were analysed using the same methods as the GALAH survey. In this work, we present the survey design, stellar parameters, distribution of metallicity and alpha-element abundances along the minor bulge axis at latitudes $b$ = $-10^{circ}, -7.5^{circ}$ and $-5^{circ}$. Our analysis of ARGOS stars indicates that the centroids of ARGOS metallicity components should be located $approx$0.09 dex closer together. The vertical distribution of $alpha$-element abundances is consistent with the varying contributions of the different metallicity components. Closer to the plane, alpha abundance ratios are lower as the metal-rich population dominates. At higher latitudes, the alpha abundance ratios increase as the number of metal-poor stars increases. However, we find that the trend of alpha-enrichment with respect to metallicity is independent of latitude. Comparison of our results with those of GALAH DR2 revealed that for [Fe/H] $approx -0.8$, the bulge shares the same abundance trend as the high-$alpha$ disk population. However, the metal-poor bulge population ([Fe/H] $lesssim -0.8$) show enhanced alpha abundance ratios compared to the disk/halo. These observations point to fairly rapid chemical evolution in the bulge, and that the metal-poor bulge population does not share the same similarity with the disk as the more metal-rich populations.



قيم البحث

اقرأ أيضاً

163 - L. Duong , M. Asplund 2019
This work explores the detailed chemistry of the Milky Way bulge using the HERMES spectrograph on the Anglo-Australian Telescope. Here we present the abundance ratios of 13 elements for 832 red giant branch and clump stars along the minor bulge axis at latitudes $b=-10^{circ}, -7.5$ and $-5^{circ}$. Our results show that none of the abundance ratios vary significantly with latitude. We also observe {color{red}disk-like} [Na/Fe] abundance ratios, which indicates the bulge does not contain helium-enhanced populations as observed in some globular clusters. Helium enhancement is therefore not the likely explanation for the double red-clump observed in the bulge. We confirm that bulge stars mostly follow abundance trends observed in the disk. However, this similarity is not confirmed across for all elements and metallicity regimes. The more metal-poor bulge population at [Fe/H] $lesssim -0.8$ is enhanced in the elements associated with core collapse supernovae (SNeII). In addition, the [La/Eu] abundance ratio suggests higher $r$-process contribution, and likely higher star formation in the bulge compared to the disk. This highlights the complex evolution in the bulge, which should be investigated further, both in terms of modelling; and with additional observations of the inner Galaxy.
Several recent studies have demonstrated that the Galactic bulge hosts two components with different mean metallicities, and possibly different spatial distribution and kinematics. As a consequence, both the metallicity distribution and the radial ve locity of bulge stars vary across different line of sights. We present here the metallicity distribution function of red clump stars in 26 fields spread across a wide area of the bulge, with special emphasis on fields close to Galactic plane, at latitudes b=-2 and b=-1, that were not explored before. This paper includes new metallicities from a sample of about 5000 K giant stars, observed at spectral resolution R=6500, in the Calcium II Triplet region. They are the main dataset of the GIRAFFE Inner Bulge Survey. As part of the same survey we have previously published results for a sample of about 600 K giant stars, at latitude b=-4 , derived from higher resolution spectra (R=22,500). Results. The combined sample allows us to trace and characterize the metal poor and metal rich bulge populations down to the inner bulge. We present a density map for each of the two components. Contrary to the expectations from previous works, we found the metal poor population to be more centrally concentrated than the metal rich one, and with a more axisymmetric spatial distribution. The metal rich population, on the other hand, is arranged in a boxy distribution, consistent with an edge-on bar. By coupling metallicities and radial velocities we show that the metal poor population has a velocity dispersion that varies rather mildly with latitude. On the contrary, the metal rich population has a low velocity dispersion far from the plane (b=-8.5), but it has a steeper gradient with latitude, becoming higher than the metal poor one in the innermost field (b=-1). [abridged]
The HST/WFC3 multiband photometry spanning from the UV to the near-IR of four fields in the Galactic bulge, together with that for six template globular and open clusters, are used to photometrically tag the metallicity [Fe/H] of stars in these field s after proper-motion rejecting most foreground disk contaminants. Color-magnitude diagrams and luminosity functions are then constructed, in particular for the most metal rich and most metal poor stars in each field. We do not find any significant difference between the $I$-band and $H$-band luminosity functions, hence turnoff luminosity and age, of the metal rich and metal poor components which therefore appear essentially coeval. In particular, we find that no more than $sim 3%$ of the metal-rich component can be $sim 5$ Gyr old, or younger. Conversely, theoretical luminosity functions give a good match to the observed ones for an age of ~10 Gyr. Assuming this age is representative for the bulk of bulge stars, we then recall the observed properties of star-forming galaxies at 10 Gyr lookback time, i.e., at z~2, and speculate about bulge formation in that context. We argue that bar formation and buckling instabilities leading to the observed boxy/peanut, X-shaped bulge may have arisen late in the history of the Milky Way galaxy, once its gas fraction had decreased compared to the high values typical of high-redshift galaxies. This paper follows the public release of the photometric and astrometric catalogs for the measured stars in the four fields.
Using 3D positions and kinematics of stars relative to the Sagittarius (Sgr) orbital plane and angular momentum, we identify 166 Sgr stream members observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) that also have Gaia DR 2 astrometry. This sample of 63/103 stars in the Sgr trailing/leading arm are combined with an APOGEE sample of 710 members of the Sgr dwarf spheroidal core (385 of them newly presented here) to establish differences of 0.6 dex in median metallicity and 0.1 dex in [$alpha$/Fe] between our Sgr core and dynamically older stream samples. Mild chemical gradients are found internally along each arm, but these steepen when anchored by core stars. With a model of Sgr tidal disruption providing estimated dynamical ages (i.e., stripping times) for each stream star, we find a mean metallicity gradient of 0.12 +/- 0.03 dex/Gyr for stars stripped from Sgr over time. For the first time, an [$alpha$/Fe] gradient is also measured within the stream, at 0.02 +/- 0.01 dex/Gyr using magnesium abundances and 0.04 +/- 0.01 dex/Gyr using silicon, which imply that the Sgr progenitor had significant radial abundance gradients. We discuss the magnitude of those inferred gradients and their implication for the nature of the Sgr progenitor within the context of the current family of Milky Way satellite galaxies, and suggest that more sophisticated Sgr models are needed to properly interpret the growing chemodynamical detail we have on the Sgr system.
Recent studies have argued that galaxy mergers are not important drivers for the evolution of S0s, on the basis that mergers cannot preserve the coupling between the bulge and disk scale-lengths observed in these galaxies and the lack of correlation of their ratio with the S0 Hubble type. We investigate whether the remnants resulting from collision-less N-body simulations of intermediate and minor mergers onto S0 galaxies evolve fulfilling global structural relations observed between the bulges and disks of these galaxies. Different initial bulge-to-disk ratios of the primary S0 have been considered, as well as different satellite densities, mass ratios, and orbits of the encounter. We have analysed the final morphology of the remnants in images simulating the typical observing conditions of S0 surveys. We derive bulge+disk decompositions of the final remnants to compare their global bulge-to-disk structure with observations. We show that all remnants present undisturbed S0 morphologies according to the prescriptions of specialized surveys. The dry intermediate and minor mergers induce noticeable bulge growth (S0c --> S0b and S0b --> S0a), but affect negligibly to the bulge and disk scale-lengths. Therefore, if a coupling between these two components exists prior to the merger, the encounter does not break this coupling. This fact provides a simple explanation for the lack of correlation between the ratio of bulge and disk scale-lengths and the S0 Hubble type reported by observations. These models prove that dry intermediate and minor mergers can induce global structural evolution within the sequence of S0 Hubble types compatible with observations, meaning that these processes should not be discarded from the evolutionary scenarios of S0s just on the basis of the strong coupling observed between the bulge and disk scale-lengths in these galaxies (abridged).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا