ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray absorbing column densities of a complete sample of short Gamma Ray Bursts

165   0   0.0 ( 0 )
 نشر من قبل Laura Asquini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We update a flux-limited complete sample of Swift-based SGRBs (SBAT4, DAvanzo et al. 2014), bringing it to 25 events and doubling its previous redshift range. We then evaluate the column densities of the events in the updated sample, in order to compare them with the NH distribution of LGRBs, using the sample BAT6ext (Arcodia et al. 2016). We rely on Monte Carlo simulations of the two populations and compare the computed NH distributions with a two sample Kolmogorov Smirnov (K-S) test. We then study how the K-S probability varies with respect to the redshift range we consider. We find that the K-S probability keeps decreasing as redshift increases until at z$sim$1.8 the probability that short and long GRBs come from the same parent distribution drops below 1$%$. This testifies for an observational difference among the two populations. This difference may be due to the presence of highly absorbed LGRBs above z$sim$1.3, which have not been observed in the SGRB sample yet, although this may be due to our inability to detect them, or to the relatively small sample size.



قيم البحث

اقرأ أيضاً

The origin of the X-ray afterglows of gamma-ray bursts has regularly been debated. We fit both the fireball-shock and millisecond-magnetar models of gamma-ray bursts to the X-ray data of GRB 130603B and 140903A. We use Bayesian model selection to ans wer the question of which model best explains the data. This is dependent on the maximum allowed non-rotating neutron star mass $M_{textrm{TOV}}$, which depends solely on the unknown nuclear equation of state. We show that the data for GRB140903A favours the millisecond-magnetar model for all possible equations of state, while the data for GRB130603B favours the millisecond-magnetar model if $M_{textrm{TOV}} gtrsim 2.3 M_{odot}$. If $M_{textrm{TOV}} lesssim 2.3 M_{odot}$, the data for GRB130603B supports the fireball-shock model. We discuss implications of this result in regards to the nuclear equation of state and the prospect of gravitational-wave emission from newly-born millisecond magnetars.
We study the properties of the population of optically dark events present in a carefully selected complete sample of bright Swift long gamma-ray bursts. The high level of completeness in redshift of our sample (52 objects out of 58) allow us to esta blish the existence of a genuine dark population and we are able to estimate the maximum fraction of dark burst events (~30%) expected for the whole class of long gamma-ray burst. The redshift distribution of this population of dark bursts is similar to the one of the whole sample. Interestingly, the rest-frame X-ray luminosity (and the de-absorbed X-ray flux) of the sub-class of dark bursts is slightly higher than the average luminosity of the non-dark events. At the same time the prompt properties do not differ and the optical flux of dark events is at the lower tail of the optical flux distribution, corrected for Galactic absorption. All these properties suggest that dark bursts events generate in much denser environments with respect to normal bright events. We can therefore exclude the high-z and the low-density scenarios and conclude that the major cause of the origin of optically dark events is the dust extinction.
279 - Edo Berger 2013
Gamma-ray bursts (GRBs) display a bimodal duration distribution, with a separation between the short- and long-duration bursts at about 2 sec. The progenitors of long GRBs have been identified as massive stars based on their association with Type Ic core-collapse supernovae, their exclusive location in star-forming galaxies, and their strong correlation with bright ultraviolet regions within their host galaxies. Short GRBs have long been suspected on theoretical grounds to arise from compact object binary mergers (NS-NS or NS-BH). The discovery of short GRB afterglows in 2005, provided the first insight into their energy scale and environments, established a cosmological origin, a mix of host galaxy types, and an absence of associated supernovae. In this review I summarize nearly a decade of short GRB afterglow and host galaxy observations, and use this information to shed light on the nature and properties of their progenitors, the energy scale and collimation of the relativistic outflow, and the properties of the circumburst environments. The preponderance of the evidence points to compact object binary progenitors, although some open questions remain. Based on this association, observations of short GRBs and their afterglows can shed light on the on- and off-axis electromagnetic counterparts of gravitational wave sources from the Advanced LIGO/Virgo experiments.
We study the X-ray absorption of a complete sample of 99 bright Swift gamma-ray bursts. Over the last few years, a strong correlation between the intrinsic X-ray absorbing column density (N_H(z)) and the redshift was found. This absorption excess in high-z GRBs is now thought to be due to the overlooked contribution of the absorption along the intergalactic medium, by means of both intervening objects and the diffuse warm-hot intergalactic medium along the line of sight. In this work we neglect the absorption along the IGM, because our purpose is to study the eventual effect of a radical change in the Galactic absorption model on the N_H(z) distribution. Therefore, we derive the intrinsic absorbing column densities using two different Galactic absorption models, the Leiden Argentine Bonn HI survey and the more recent model including molecular hydrogen. We find that, if on the one hand the new Galactic model considerably affects the single column density values, on the other hand there is no drastic change in the distribution as a whole. It becomes clear that the contribution of Galactic column densities alone, no matter how improved, is not sufficient to change the observed general trend and it has to be considered as a second-order correction. The cosmological increase of N_H(z) as a function of redshift persists and, in order to explain the observed distribution, it is necessary to include the contribution of both the diffuse intergalactic medium and the intervening systems along the line of sight of the GRBs.
We analyze the Swift/BAT sample of short gamma-ray bursts, using an objective Bayesian Block procedure to extract temporal descriptors of the bursts initial pulse complexes (IPCs). The sample comprises 12 and 41 bursts with and without extended emiss ion (EE) components, respectively. IPCs of non-EE bursts are dominated by single pulse structures, while EE bursts tend to have two or more pulse structures. The medians of characteristic timescales - durations, pulse structure widths, and peak intervals - for EE bursts are factors of ~ 2-3 longer than for non-EE bursts. A trend previously reported by Hakkila and colleagues unifying long and short bursts - the anti-correlation of pulse intensity and width - continues in the two short burst groups, with non-EE bursts extending to more intense, narrower pulses. In addition we find that preceding and succeeding pulse intensities are anti-correlated with pulse interval. We also examine the short burst X-ray afterglows as observed by the Swift/XRT. The median flux of the initial XRT detections for EE bursts (~ 6 x 10^-10 erg cm^-2 s^-1) is ~> 20 x brighter than for non-EE bursts, and the median X-ray afterglow duration for EE bursts (~ 60,000 s) is ~ 30 x longer than for non-EE bursts. The tendency for EE bursts toward longer prompt-emission timescales and higher initial X-ray afterglow fluxes implies larger energy injections powering the afterglows. The longer-lasting X-ray afterglows of EE bursts may suggest that a significant fraction explode into more dense environments than non-EE bursts, or that the sometimes-dominant EE component efficiently powers the afterglow. Combined, these results favor different progenitors for EE and non-EE short bursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا