ترغب بنشر مسار تعليمي؟ اضغط هنا

Cascaded Rotational Doppler Effect

72   0   0.0 ( 0 )
 نشر من قبل Wei Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose and substantiate experimentally the cascaded rotational Doppler effect for interactions of spinning objects with light carrying angular momentum. Based on the law of parity conservation for electromagnetic interactions, we reveal that the frequency shift can be doubled through cascading two rotational Doppler processes which are mirror-imaged to each other. This effect is further experimentally verified with a rotating half-wave plate, and the mirror-imaging process is achieved by reflecting the frequency-shifted circularly polarized wave upon a mirror with a quarter-wave plate in front of it. The mirror symmetry and thus parity conservation guarantees that this doubled frequency shift can be further multiplied with more successive mirror-imaging conjugations, with photons carrying spin and/or orbital angular momentum, which could be widely applied for detection of rotating systems ranging from molecules to celestial bodies with high precision and sensitivity.

قيم البحث

اقرأ أيضاً

108 - Amit Halder 2002
A monochromatic linear source of light is rotated with certain angular frequency and when such light is analysed after reflection then a change of frequency or wavelength may be observed depending on the location of the observer. This change of frequ ency or wavelength is different from the classical Doppler effect [1] or relativistic Doppler effect [2]. The reason behind this shift in wavelength is that a certain time interval observed by an observer in the rotating frame is different from that of a stationary observer.
The frequency shift of a helical light beam experiencing the rotation near the axis deferring from its own axis (conical evolution) is studied theoretically. Both the energy and the kinematic approaches lead to a paradoxical conclusion that after a w hole cycle of the system rotation the beam does not return to its initial state. Another paradox is manifested in the peculiar behavior of the beam transverse pattern rotation at different geometric parameters of the evolving system. A fundamental role of the detecting system motion is substantiated. The special natural observers motion is found for which both paradoxes are eliminated. Relations of the described facts with the Hannays geometric phase concept are discussed.
Doppler cooling is a widely used technique to laser cool atoms and nanoparticles exploiting the Doppler shift involved in translational transformations. The rotational Doppler effect arising from rotational coordinate transformations should similarly enable optical manipulations of the rotational degrees of freedom in rotating nanosystems. Here, we show that rotational Doppler cooling and heating (RDC and RDH) effects embody rich and unexplored physics, such as a strong dependence on particle morphology. For geometrically confined particles, such as a nanorod that can represent diatomic molecules, RDC and RDH follow similar rules as their translational Doppler counterpart, where cooling and heating are always observed at red- or blue-detuned laser frequencies, respectively. Surprisingly, nanosystems that can be modeled as a solid particle shows a strikingly different response, where RDH appears in a frequency regime close to their resonances, while a detuned frequency produces cooling of rotation. We also predict that the RDH effect can lead to unprecedented spontaneous chiral symmetry breaking, whereby an achiral particle under linearly polarized illumination starts spontaneously rotating, rendering it nontrivial compared to the translational Doppler effect. Our results open up new exciting possibilities to control the rotational motion of molecules and nanoparticles.
The function to measure orbital angular momentum (OAM) distribution of vortex light is essential for OAM applications. Although there are lots of works to measure OAM modes, it is difficult to measure the power distribution of different OAM modes qua ntitatively and instantaneously, let alone measure the phase distribution among them. In this work, we demonstrate an OAM complex spectrum analyzer, which enables to measure the power and phase distribution of OAM modes simultaneously by employing rotational Doppler Effect. The original OAM mode distribution is mapped to electrical spectrum of beating signals with a photodetector. The power distribution and phase distribution of superimposed OAM beams are successfully retrieved by analyzing the electrical spectrum. We also extend the measurement to other spatial modes, such as linear polarization modes. These results represent a new landmark of spatial mode analysis and show great potentials in optical communication and OAM quantum state tomography.
We study cascaded quadratic soliton compressors and address the physical mechanisms that limit the compression. A nonlocal model is derived, and the nonlocal response is shown to have an additional oscillatory component in the nonstationary regime wh en the group-velocity mismatch (GVM) is strong. This inhibits efficient compression. Raman-like perturbations from the cascaded nonlinearity, competing cubic nonlinearities, higher-order dispersion, and soliton energy may also limit compression, and through realistic numerical simulations we point out when each factor becomes important. We find that it is theoretically possible to reach the single-cycle regime by compressing high-energy fs pulses for wavelengths $lambda=1.0-1.3 mu{rm m}$ in a $beta$-barium-borate crystal, and it requires that the system is in the stationary regime, where the phase mismatch is large enough to overcome the detrimental GVM effects. However, the simulations show that reaching single-cycle duration is ultimately inhibited by competing cubic nonlinearities as well as dispersive waves, that only show up when taking higher-order dispersion into account.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا