ﻻ يوجد ملخص باللغة العربية
We consider $kappa$-deformed relativistic quantum phase space and possible implementations of the Lorentz algebra. There are two ways of performing such implementations. One is a simple extension where the Poincare algebra is unaltered, while the other is a general extension where the Poincare algebra is deformed. As an example we fix the Jordanian twist and the corresponding realization of noncommutative coordinates, coproduct of momenta and addition of momenta. An extension with a one-parameter family of realizations of the Lorentz generators, dilatation and momenta closing the Poincare-Weyl algebra is considered. The corresponding physical interpretation depends on the way the Lorentz algebra is implemented in phase space. We show how the spectrum of the relativistic hydrogen atom depends on the realization of the generators of the Poincare-Weyl algebra.
We describe the deformed E.T. quantization rules for kappa-deformed free quantum fields, and relate these rules with the kappa-deformed algebra of field oscillators.
We propose a new generalisation of the Jordanian twist (building on the previous idea from [Meljanac S., Meljanac D., Pachol A., Pikutic D., J. Phys. A: Math. Theor. 50 (2017), 265201, 11 pages]). Obtained this way, the family of the Jordanian twists
We consider new Abelian twists of Poincare algebra describing non-symmetric generalization of the ones given in [1], which lead to the class of Lie-deformed quantum Minkowski spaces. We apply corresponding twist quantization in two ways: as generatin
In order to obtain free kappa-deformed quantum fields (with c-number commutators) we proposed new concept of kappa-deformed oscillator algebra [1] and the modification of kappa-star product [2], implementing in the product of two quantum fields the c
We present the quantum $kappa$-deformation of BMS symmetry, by generalizing the lightlike $kappa$-Poincare Hopf algebra. On the technical level, our analysis relies on the fact that the lightlike $kappa$-deformation of Poincare algebra is given by a