ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural Instability and Magnetism of Superconducting KCr$_3$As$_3$

76   0   0.0 ( 0 )
 نشر من قبل David Singh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find a lattice instability in the superconductor KCr$_3$As$_3$, corresponding to a distortion of the Cr metallic wires in the crystal structure. This distortion couples strongly to both the electronic and magnetic properties, in particular by making the electronic structure much more nearly one-dimensional, and by shifting the compound away from magnetism. We discuss the implications of these results in the context of the possibly unconventional superconductivity of this phase.

قيم البحث

اقرأ أيضاً

We present neutron total scattering and density functional theory studies on quasi-one-dimensional superconducting K$_2$Cr$_3$As$_3$ revealing a frustrated structural instability. Our first principles calculations find a significant phonon instabilit y which, under energy minimization, corresponds to a frustrated orthorhombic distortion. In diffraction studies we find large and temperature independent atomic displacement parameters which pair distribution analyses confirms and shows as resulting from highly localized orthorhombic distortions of the CrAs sublattice and coupled K displacements. These results suggest a far more complex phase diagram than previously assumed for this unusual superconductor with the likelihood of subtle interplays of structure, electron-phonon and magnetic interactions.
We report the charge doping of KCr$_3$As$_3$ via H intercalation. We show that the previously reported ethanol bath deintercalation of K$_2$Cr$_3$As$_3$ to KCr$_3$As$_3$ has a secondary effect whereby H from the bath enters the quasi-one-dimensional Cr$_6$As$_6$ chains. Furthermore, we find that - contrary to previous interpretations - the difference between non-superconducting as-grown KCr$_3$As$_3$ samples and superconducting hydrothermally annealed samples is not a change in crystallinity but due to charge doping, with the latter treatment increasing the H concentration in the CrAs tubes effectively electron-doping the 133 compound. These results suggest a new stoichiometry KH$_x$Cr$_3$As$_3$, that superconductivity arises from a suppressed magnetic order via a tunable parameter and pave the way for the first charge-doped phase diagram in these materials.
We report the first-principles study on the H-intercalated Cr-based superconductor KCr$_3$As$_3$H$_x$. Our results show a paramagnetic ground state for KCr$_3$As$_3$H. The electronic structure consists of two quasi-one-dimensional (Q1D) Fermi-surface s and one 3D Fermi-surface which are mainly contributed by Cr-d$_{z^2}$, d$_{x^2-y^2}$ and d$_{xy}$ orbitals. The bare electron susceptibility shows a $Gamma$-centered imaginary peak, indicating possible ferromagnetic spin fluctuations. Upon moderate hole doping, the system undergoes a Lifshitz transition, which may enhance the Q1D feature of the system. The Bader charge analysis and electron localization functions reveal a strong bonding nature of hydrogen in KCr$_3$As$_3$H, which results in a nontrivial electron doping in KCr$_3$As$_3$H.
We present electrical resistivity and ac-susceptibility measurements of GdTe$_3$, TbTe$_3$ and DyTe$_3$ performed under pressure. An upper charge-density-wave (CDW) is suppressed at a rate of $mathrm{d}T_{mathrm{CDW,1}}/mathrm{d}P$ = $-$85 K/GPa. For TbTe$_3$ and DyTe$_3$, a second CDW below $T_{mathrm{CDW,2}}$ increases with pressure until it reaches the $T_{mathrm{CDW,1}}$($P$) line. For GdTe$_3$, the lower CDW emerges as pressure is increased above $sim$ 1 GPa. As these two CDW states are suppressed with pressure, superconductivity (SC) appears in the three compounds at lower temperatures. Ac-susceptibility experiments performed on TbTe$_3$ provide compelling evidence for bulk SC in the low-pressure region of the phase diagram. We provide measurements of superconducting critical fields and discuss the origin of a high-pressure superconducting phase occurring above 5 GPa.
We describe the transport properties of mesoscopic devices based on the two dimensional electron gas (2DEG) present at the LaAlO$_3$/SrTiO$_3$ interface. Bridges with lateral dimensions down to 500~nm were realized using electron beam lithography. Th eir detailed characterization shows that processing and confinement do not alter the transport parameters of the 2DEG. The devices exhibit superconducting behavior tunable by electric field effect. In the normal state, we measured universal conductance fluctuations, signature of phase-coherent transport in small structures. The achievement of reliable lateral confinement of the 2DEG opens the way to the realization of quantum electronic devices at the LaAlO$_3$/SrTiO$_3$ interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا