In this paper, an attack-resilient estimation algorithm is presented for linear discrete-time stochastic systems with state and input constraints. It is shown that the state estimation errors of the proposed estimation algorithm are practically exponentially stable.
This article considers the stochastic optimal control of discrete-time linear systems subject to (possibly) unbounded stochastic disturbances, hard constraints on the manipulated variables, and joint chance constraints on the states. A tractable conv
ex second-order cone program (SOCP) is derived for calculating the receding-horizon control law at each time step. Feedback is incorporated during prediction by parametrizing the control law as an affine function of the disturbances. Hard input constraints are guaranteed by saturating the disturbances that appear in the control law parametrization. The joint state chance constraints are conservatively approximated as a collection of individual chance constraints that are subsequently relaxed via the Cantelli-Chebyshev inequality. Feasibility of the SOCP is guaranteed by softening the approximated chance constraints using the exact penalty function method. Closed-loop stability in a stochastic sense is established by establishing that the states satisfy a geometric drift condition outside of a compact set such that their variance is bounded at all times. The SMPC approach is demonstrated using a continuous acetone-butanol-ethanol fermentation process, which is used for production of high-value-added drop-in biofuels.
We consider the effect of parametric uncertainty on properties of Linear Time Invariant systems. Traditional approaches to this problem determine the worst-case gains of the system over the uncertainty set. Whilst such approaches are computationally
tractable, the upper bound obtained is not necessarily informative in terms of assessing the influence of the parameters on the system performance. We present theoretical results that lead to simple, convex algorithms producing parametric bounds on the $mathcal{L}_2$-induced input-to-output and state-to-output gains as a function of the uncertain parameters. These bounds provide quantitative information about how the uncertainty affects the system.
This paper deals with the stability analysis problem of discrete-time switched linear systems with ranged dwell time. A novel concept called L-switching-cycle is proposed, which contains sequences of multiple activation cycles satisfying the prescrib
ed ranged dwell time constraint. Based on L-switching-cycle, two sufficient conditions are proposed to ensure the global uniform asymptotic stability of discrete-time switched linear systems. It is noted that two conditions are equivalent in stability analysis with the same $L$-switching-cycle. These two sufficient conditions can be viewed as generalizations of the clock-dependent Lyapunov and multiple Lyapunov function methods, respectively. Furthermore, it has been proven that the proposed L-switching-cycle can eventually achieve the nonconservativeness in stability analysis as long as a sufficiently long L-switching-cycle is adopted. A numerical example is provided to illustrate our theoretical results.
In this paper, we first propose a method that can efficiently compute the maximal robust controlled invariant set for discrete-time linear systems with pure delay in input. The key to this method is to construct an auxiliary linear system (without de
lay) with the same state-space dimension of the original system in consideration and to relate the maximal invariant set of the auxiliary system to that of the original system. When the system is subject to disturbances, guaranteeing safety is harder for systems with input delays. Ability to incorporate any additional information about the disturbance becomes more critical in these cases. Motivated by this observation, in the second part of the paper, we generalize the proposed method to take into account additional preview information on the disturbances, while maintaining computational efficiency. Compared with the naive approach of constructing a higher dimensional system by appending the state-space with the delayed inputs and previewed disturbances, the proposed approach is demonstrated to scale much better with the increasing delay time.
In this paper, we consider the systems with trajectories originating in the nonnegative orthant becoming nonnegative after some finite time transient. First we consider dynamical systems (i.e., fully observable systems with no inputs), which we call
eventually positive. We compute forward-invariant cones and Lyapunov functions for these systems. We then extend the notion of eventually positive systems to the input-output system case. Our extension is performed in such a manner, that some valuable properties of classical internally positive input-output systems are preserved. For example, their induced norms can be computed using linear programming and the energy functions have nonnegative derivatives.
Wenbin Wan
,Hunmin Kim
,Naira Hovakimyan
.
(2019)
.
"Attack-resilient Estimation for Linear Discrete-time Stochastic Systems with Input and State Constraints"
.
Wenbin Wan
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا