ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of a White Dwarf companion to a Blue Straggler Star in the outskirts of globular cluster NGC 5466 with the Ultraviolet Imaging Telescope (UVIT)

239   0   0.0 ( 0 )
 نشر من قبل Snehalata Sahu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a hot white dwarf (WD) companion to a blue straggler star (BSS) in the globular cluster (GC) NGC 5466, based on observations from the Ultra-Violet Imaging Telescope (UVIT) on board AstroSat. The Spectral Energy Distribution (SED) of the Far-UV detected BSS NH 84 was constructed by combining the flux measurements from 4 filters of UVIT, with GALEX, GAIA and other ground-based observations. The SED of NH 84 reveals the presence of a hot companion to the BSS. The temperature and radius of the BSS (T$_{mathrm{eff}} = 8000^{+1000}_{-250}$ K, R/R$_odot = 1.44 pm 0.05$) derived from Gemini spectra and SED fitting using Kurucz atmospheric models are consistent with each other. The temperature and radius of the hotter companion of NH 84 (T$_{mathrm{eff}} = 32,000 pm 2000$ K, R/R$_odot = 0.021 pm 0.007$) derived by fitting Koester WD models to the SED suggest that it is likely to be a hot WD. The radial velocity derived from the spectra along with the proper motion from GAIA DR2 confirms NH 84 to be a kinematic member of the cluster. This is the second detection of a BSS-WD candidate in a GC, and the first in the outskirts of a low density GC. The location of this BSS in NGC 5466 along with its dynamical age supports the mass-transfer pathway for BSS formation in low density environments.



قيم البحث

اقرأ أيضاً

We investigate the old open cluster M67 using ultraviolet photometric data of Ultra-Violet Imaging Telescope in multi-filter far-UV bands. M67, well known for the presence of several blue straggler stars (BSS), has been put to detailed tests to under stand their formation pathways. Currently, there are three accepted formation channels: mass transfer due to Roche-lobe overflow in binary systems, stellar mergers either due to dynamical collisions or through coalescence of close binaries. So far, there had not been any confirmed detection of a white dwarf (WD) companion to any of the BSSs in this cluster. Here, we present the detection of WD companions to 5 bright BSSs in M67. The multiwavelength spectral energy distributions covering 0.12 -11.5 $mu$m range, were found to require binary spectral fits for 5 BSSs, consisting of a cool (BSS) and a hot companion. The parameters (Luminosity, Temperature, Radius and Mass) of the hot companions suggest them to be WDs with mass in the range 0.2 - 0.35 M$_{odot}$ with T$_{eff}$ $sim$ 11000 - 24000 K.
We present early results from the Ultra-Violet Imaging Telescope (UVIT) onboard the ASTROSAT observatory. We report the discovery of a hot companion associated with one of the blue straggler stars (BSSs) in the old open cluster, NGC188. Using fluxes measured in four filters in UVITs Far-UV (FUV) channel, and two filters in the near-UV (NUV) channel, we have constructed the spectral energy distribution (SED) of the star WOCS-5885, after combining with flux measurements from GALEX, UIT, UVOT, SPITZER, WISE and several ground-based facilities. The resulting SED spans a wavelength range of 0.15~${mu}$m to 7.8~${mu}$m. This object is found to be one of the brightest FUV sources in the cluster. An analysis of the SED reveals the presence of two components. The cooler component is found to have a temperature of 6,000$pm$150~K, confirming that it is a BSS. Assuming it to be a main-sequence star, we estimate its mass to be $sim$ 1.1 - 1.2M$_odot$. The hotter component, with an estimated temperature of 17,000$pm$500~K, has a radius of $sim$ 0.6R$_odot$ and L $sim$ 30L$_odot$. Bigger and more luminous than a white dwarf, yet cooler than a sub-dwarf, we speculate that it is a post-AGB/HB star that has recently transferred its mass to the BSS, which is known to be a rapid rotator. This binary system, which is the first BSS with a post-AGB/HB companion identified in an open cluster, is an ideal laboratory to study the process of BSS formation via mass transfer.
We present an observational far-UV (FUV) and near-UV (NUV) study of the core region of the globular cluster NGC 6397. The observations were obtained with the Space Telescope Imaging Spectrograph (STIS, FUV), and the Wide Field Camera 3 (WFC3, NUV) on board the Hubble Space Telescope. Here, we focus on the UV bright stellar populations such as blue stragglers (BSs), white dwarfs (WDs) and cataclysmic variables (CVs). We present the first FUV-NUV color-magnitude diagram (CMD) for this cluster. To support our classification of the stellar populations, we compare our FUV-NUV CMD with optical data from the ACS Survey of Galactic Globular Clusters. The FUV-NUV CMD indicates 16 sources located in the WD area, and ten BSs within the 25x 25 of the STIS FUV data. Eighteen Chandra X-ray sources are located within the FUV field of view. Thirteen of those have a NUV counterpart, of which nine sources also have a FUV counterpart. Out of those, five sources are previously suggested CVs, and indeed all five are located in the WD/CV region in our FUV-NUV CMD. Another CV only has a FUV but no NUV counterpart. We also detect a NUV (but no FUV) counterpart to the MSP located in the core of this cluster. The NUV lightcurves of the CVs and MSP show flickering behaviour typical of CVs. We found that the BSs and CVs are the most centrally concentrated population. This might be an effect of mass segregation or indicate the preferred birth place of BSs and CVs via dynamical interactions in the dense core region of GCs. HB stars are the least centrally concentrated population and absent in the innermost area of the core.
We have analyzed FUSE, COS, GHRS, and Keck HIRES spectra of the UV-bright star Barnard 29 in M13 (NGC 6205). By comparing the photospheric abundances derived from multiple ionization states of C, N, O, Si, and S, we infer an effective temperature T_e ff = 21,400 +/- 400 K. Balmer-line fits yield a surface gravity log g = 3.10 +/- 0.03. We derive photospheric abundances of He, C, N, O, Mg, Al, Si, P, S, Cl, Ar, Ti, Cr, Fe, Ni, and Ge. Barnard 29 exhibits an abundance pattern typical of the first-generation stars in M13, enhanced in oxygen and depleted in aluminum. An underabundance of C and an overabundance of N suggest that the star experienced nonconvective mixing on the RGB. We see no evidence of significant chemical evolution since the star left the RGB; in particular, it did not undergo third dredge-up. Previous workers found that the stars FUV spectra yield an iron abundance about 0.5 dex lower than its optical spectrum, but the iron abundances derived from all of our spectra are consistent with the cluster value. We attribute this difference to our use of model atmospheres without microturbulence, which is ruled out by careful fits to optical absorption features. We derive a mass M_*/M_sun = 0.45 - 0.55 and luminosity log (L_*/L_sun) = 3.26 - 3.35. Comparison with stellar-evolution models suggests that Barnard 29 evolved from a ZAHB star of mass M_*/M_sun between 0.50 and 0.55, near the boundary between the extreme and blue horizontal branches.
We present the discovery of a white dwarf companion at 3.6 from GJ3346, a nearby ($pisim$42 mas) K star observed with SPHERE@VLT as part of an open time survey for faint companions to objects with significant proper motion discrepancies ($Deltamu$) b etween Gaia DR1 and Tycho-2. Syrius-like systems like GJ3346AB, which include a main sequence star and a white dwarf, can be difficult to detect because of the intrinsic faintness of the latter. They have, however, been found to be common contaminants for direct imaging searches. White dwarfs have in fact similar brightness to sub-stellar companions in the infrared, while being much brighter in the visible bands like those used by Gaia. Combining our observations with Gaia DR2 and with several additional archival data sets, we were able to fully constrain the physical properties of GJ3346B, such as its effective temperature (11$times$10$^3pm$500 K) as well as the cooling age of the system (648$pm$58 Myrs). This allowed us to better understand the system history and to partially explains the discrepancies previously noted in the age indicators for this objects. Although further investigation is still needed, it seems that GJ3346, which was previously classified as young, is in fact most likely to be older than 4 Gyrs. Finally, given that the mass (0.58$pm$0.01$M_{odot}$)} and separation (85 au) of GJ3346B are compatible with the observed $Deltamu$, this discovery represents a further confirmation of the potential of this kind of dynamical signatures as selection methods for direct imaging surveys targeting faint, sub-stellar companions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا