ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge Excitations in Nd$_{2-x}$Ce$_x$CuO$_4$ Observed with Resonant Inelastic X-ray Scattering: Comparison of Cu K-edge with Cu L$_3$-edge

125   0   0.0 ( 0 )
 نشر من قبل Kenji Ishii
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of momentum-dependent charge excitations in Nd$_{2-x}$Ce$_x$CuO$_4$ ($x$ = 0.075 and 0.18). The peak position and width of the excitations coincide excellently with those observed in Cu L$_3$-edge RIXS. It demonstrates that the same charge excitations are observed at the two edges.


قيم البحث

اقرأ أيضاً

423 - C.-C. Chen , B. Moritz , F. Vernay 2010
Results of model calculations using exact diagonalization reveal the orbital character of states associated with different Raman loss peaks in Cu $K$-edge resonant inelastic X-ray scattering (RIXS) from La$_{2}$CuO$_{4}$. The model includes electroni c orbitals necessary to highlight non-local Zhang-Rice singlet, charge transfer and $d$-$d$ excitations, as well as states with apical oxygen 2$p_z$ character. The dispersion of these excitations is discussed with prospects for resonant final state wave-function mapping. A good agreement with experiments emphasizes the substantial multi-orbital character of RIXS profiles in the energy transfer range 1-6 eV.
388 - F. Vernay , B. Moritz , I. Elfimov 2007
We present calculations for resonant inelastic x-ray scattering (RIXS) in edge-shared copper oxide systems, such as CuGeO$_{3}$ and Li$_{2}$CuO$_{2}$, appropriate for hard x-ray scattering where the photoexcited electron lies above oxygen 2p and copp er 3d orbital energies. We perform exact diagonalizations of the multi-band Hubbard and determine the energies, orbital character and resonance profiles of excitations which can be probed via RIXS. We find excellent agreement with recent results on Li$_{2}$CuO$_{2}$ and CuGeO$_{3}$ in the 2-7 eV photon energy loss range.
We present a comprehensive study of the temperature and doping dependence of the 500 meV peak observed at ${bf q}=(pi,0)$ in resonant inelastic x-ray scattering (RIXS) experiments on $rm La_2CuO_4$. The intensity of this peak persists above the Neel temperature (T$_{N}$=320 K), but decreases gradually with increasing temperature, reaching zero at around T=500 K. The peak energy decreases with temperature in close quantitative accord with the behavior of the two-magnon $rm B_{1g}$ Raman peak in $rm La_2CuO_4$, and with suitable rescaling, agrees with the Raman peak shifts in $rm EuBa_2Cu_3O_6$ and $rm K_2NiF_4$. The overall dispersion of this excitation in the Brillouin zone is found to be in agreement with theoretical calculations for a two-magnon excitation. Upon doping, the peak intensity decreases analogous to the Raman mode intensity and appears to track the doping dependence of the spin correlation length. Taken together, these observations strongly suggest that the 500 meV mode is magnetic in character and is likely a two-magnon excitation.
We performed a resonant inelastic X-ray scattering (RIXS) study of La$_{2-x}$Sr$_{x}$NiO$_{4+{delta}}$ (LSNO) at the oxygen $K$ edge to investigate the nature of the doped holes with regard to charge excitations. Charge excitations of the hole-doped nickelates are found to be almost independent of momentum transfer, indicating that the doped holes are strongly localized in character. Additionally, conspicuous changes in energy position are in temperature dependence. These characters are observed in stark contrast to those of the high-$T_{c}$ cuprate La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO), where delocalized doped holes form charge excitations with sizable momentum dependence in the CuO$_2$ plane. This distinct nature of charge excitations of doped holes is consistent with the metallicity of the materials and could be caused by strong electron-phonon coupling and weak quantum spin fluctuation in the nickelates.
Resonant inelastic X-ray scattering (RIXS) experiments performed at the oxygen-$K$ edge on the iridate perovskites {SIOS} and {SION} reveal a sequence of well-defined dispersive modes over the energy range up to $sim 0.8$ eV. The momentum dependence of these modes and their variation with the experimental geometry allows us to assign each of them to specific collective magnetic and/or electronic excitation processes, including single and bi-magnons, and spin-orbit and electron-hole excitons. We thus demonstrated that dispersive magnetic and electronic excitations are observable at the O-$K$ edge in the presence of the strong spin-orbit coupling in the $5d$ shell of iridium and strong hybridization between Ir $5d$ and O $2p$ orbitals, which confirm and expand theoretical expectations. More generally, our results establish the utility of O-$K$ edge RIXS for studying the collective excitations in a range of $5d$ materials that are attracting increasing attention due to their novel magnetic and electronic properties. Especially, the strong RIXS response at O-$K$ edge opens up the opportunity for investigating collective excitations in thin films and heterostructures fabricated from these materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا