ﻻ يوجد ملخص باللغة العربية
By a new method derived from Nicola--Primo--Tabacco[24], we study the boundedness on $alpha$-modulation spaces of unimodular multipliers with symbol $e^{imu(xi)}$. Comparing with the previous results, the boundedness result is established for a larger family of unimodular multipliers under weaker assumptions.
We study the boundedness on the Wiener amalgam spaces $W^{p,q}_s$ of Fourier multipliers with symbols of the type $e^{imu(xi)}$, for some real-valued functions $mu(xi)$ whose prototype is $|xi|^{beta}$ with $betain (0,2]$. Under some suitable assumpt
A new characterization of CMO(R^n) is established by the local mean oscillation. Some characterizations of iterated compact commutators on weighted Lebesgue spaces are given, which are new even in the unweighted setting for the first order commutators.
In this article we examine Dirichlet type spaces in the unit polydisc, and multipliers between these spaces. These results extend the corresponding work of G. D. Taylor in the unit disc. In addition, we consider functions on the polydisc whose rest
The Kahane--Salem--Zygmund inequality is a probabilistic result that guarantees the existence of special matrices with entries $1$ and $-1$ generating unimodular $m$-linear forms $A_{m,n}:ell_{p_{1}}^{n}times cdotstimesell_{p_{m}}^{n}longrightarrowma
In this paper, we consider the trace theorem for modulation spaces, alpha modulation spaces and Besov spaces. For the modulation space, we obtain the sharp results.