ﻻ يوجد ملخص باللغة العربية
MOLSCAT is a general-purpose package for performing non-reactive quantum scattering calculations for atomic and molecular collisions using coupled-channel methods. Simple atom-molecule and molecule-molecule collision types are coded internally and additional ones may be handled with plug-in routines. Plug-in routines may include external magnetic, electric or photon fields (and combinations of them). Simple interaction potentials are coded internally and more complicated ones may be handled with plug-in routines. BOUND is a general-purpose package for performing calculations of bound-state energies in weakly bound atomic and molecular systems using coupled-channel methods. It solves the same sets of coupled equations as MOLSCAT, and can use the same plug-in routines if desired, but with different boundary conditions. FIELD is a development of BOUND that locates external fields at which a bound state exists with a specified energy. One important use is to locate the positions of magnetically tunable Feshbach resonance positions in ultracold collisions. Versions of these programs before version 2019.0 were released separately. However, there is a significant degree of overlap between their internal structures and usage specifications. This manual therefore describes all three, with careful identification of parts that are specific to one or two of the programs.
The BOUND program calculates the bound states of a complex formed from two interacting particles using coupled-channel methods. It is particularly suitable for the bound states of atom-molecule and molecule-molecule Van der Waals complexes and for th
MOLSCAT is a general-purpose program for quantum-mechanical calculations on nonreactive atom-atom, atom-molecule and molecule-molecule collisions. It constructs the coupled-channel equations of atomic and molecular scattering theory, and solves them
We provide a theoretical framework describing slow-light polaritons interacting via atomic Rydberg states. We use a diagrammatic method to analytically derive the scattering properties of two polaritons. We identify parameter regimes where polariton-
The three-body system inside the unitary window is studied for three equal bosons and three equal fermions having $1/2$ spin-isospin symmetry. We perform a gaussian characterization of the window using a gaussian potential to define trajectories for
These notes were written for a set of three lectures given in a school at the Max Planck Institute for the Physics of Complex Systems in October/2017 before the workshop Critical Stability of Quantum Few-Body Systems. These lectures are primarily ded