ترغب بنشر مسار تعليمي؟ اضغط هنا

Looking for the Devil in the Details: Learning Trilinear Attention Sampling Network for Fine-grained Image Recognition

129   0   0.0 ( 0 )
 نشر من قبل Heliang Zheng
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning subtle yet discriminative features (e.g., beak and eyes for a bird) plays a significant role in fine-grained image recognition. Existing attention-based approaches localize and amplify significant parts to learn fine-grained details, which often suffer from a limited number of parts and heavy computational cost. In this paper, we propose to learn such fine-grained features from hundreds of part proposals by Trilinear Attention Sampling Network (TASN) in an efficient teacher-student manner. Specifically, TASN consists of 1) a trilinear attention module, which generates attention maps by modeling the inter-channel relationships, 2) an attention-based sampler which highlights attended parts with high resolution, and 3) a feature distiller, which distills part features into a global one by weight sharing and feature preserving strategies. Extensive experiments verify that TASN yields the best performance under the same settings with the most competitive approaches, in iNaturalist-2017, CUB-Bird, and Stanford-Cars datasets.



قيم البحث

اقرأ أيضاً

201 - Ming Sun , Yuchen Yuan , Feng Zhou 2018
Attention-based learning for fine-grained image recognition remains a challenging task, where most of the existing methods treat each object part in isolation, while neglecting the correlations among them. In addition, the multi-stage or multi-scale mechanisms involved make the existing methods less efficient and hard to be trained end-to-end. In this paper, we propose a novel attention-based convolutional neural network (CNN) which regulates multiple object parts among different input images. Our method first learns multiple attention region features of each input image through the one-squeeze multi-excitation (OSME) module, and then apply the multi-attention multi-class constraint (MAMC) in a metric learning framework. For each anchor feature, the MAMC functions by pulling same-attention same-class features closer, while pushing different-attention or different-class features away. Our method can be easily trained end-to-end, and is highly efficient which requires only one training stage. Moreover, we introduce Dogs-in-the-Wild, a comprehensive dog species dataset that surpasses similar existing datasets by category coverage, data volume and annotation quality. This dataset will be released upon acceptance to facilitate the research of fine-grained image recognition. Extensive experiments are conducted to show the substantial improvements of our method on four benchmark datasets.
Image completion has achieved significant progress due to advances in generative adversarial networks (GANs). Albeit natural-looking, the synthesized contents still lack details, especially for scenes with complex structures or images with large hole s. This is because there exists a gap between low-level reconstruction loss and high-level adversarial loss. To address this issue, we introduce a perceptual network to provide mid-level guidance, which measures the semantical similarity between the synthesized and original contents in a similarity-enhanced space. We conduct a detailed analysis on the effects of different losses and different levels of perceptual features in image completion, showing that there exist complementarity between adversarial training and perceptual features. By combining them together, our model can achieve nearly seamless fusion results in an end-to-end manner. Moreover, we design an effective lightweight generator architecture, which can achieve effective image inpainting with far less parameters. Evaluated on CelebA Face and Paris StreetView dataset, our proposed method significantly outperforms existing methods.
171 - Yuxin Peng , Xiangteng He , 2017
Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, such as 200 subcategories belonging to the bird, which is highly challenging due to large variance in the same subcategory and sma ll variance among different subcategories. Existing methods generally first locate the objects or parts and then discriminate which subcategory the image belongs to. However, they mainly have two limitations: (1) Relying on object or part annotations which are heavily labor consuming. (2) Ignoring the spatial relationships between the object and its parts as well as among these parts, both of which are significantly helpful for finding discriminative parts. Therefore, this paper proposes the object-part attention model (OPAM) for weakly supervised fine-grained image classification, and the main novelties are: (1) Object-part attention model integrates two level attentions: object-level attention localizes objects of images, and part-level attention selects discriminative parts of object. Both are jointly employed to learn multi-view and multi-scale features to enhance their mutual promotions. (2) Object-part spatial constraint model combines two spatial constraints: object spatial constraint ensures selected parts highly representative, and part spatial constraint eliminates redundancy and enhances discrimination of selected parts. Both are jointly employed to exploit the subtle and local differences for distinguishing the subcategories. Importantly, neither object nor part annotations are used in our proposed approach, which avoids the heavy labor consumption of labeling. Comparing with more than 10 state-of-the-art methods on 4 widely-used datasets, our OPAM approach achieves the best performance.
In this work, we present a novel mask guided attention (MGA) method for fine-grained patchy image classification. The key challenge of fine-grained patchy image classification lies in two folds, ultra-fine-grained inter-category variances among objec ts and very few data available for training. This motivates us to consider employing more useful supervision signal to train a discriminative model within limited training samples. Specifically, the proposed MGA integrates a pre-trained semantic segmentation model that produces auxiliary supervision signal, i.e., patchy attention mask, enabling a discriminative representation learning. The patchy attention mask drives the classifier to filter out the insignificant parts of images (e.g., common features between different categories), which enhances the robustness of MGA for the fine-grained patchy image classification. We verify the effectiveness of our method on three publicly available patchy image datasets. Experimental results demonstrate that our MGA method achieves superior performance on three datasets compared with the state-of-the-art methods. In addition, our ablation study shows that MGA improves the accuracy by 2.25% and 2% on the SoyCultivarVein and BtfPIS datasets, indicating its practicality towards solving the fine-grained patchy image classification.
Deep Convolutional Neural Network (DCNN) and Transformer have achieved remarkable successes in image recognition. However, their performance in fine-grained image recognition is still difficult to meet the requirements of actual needs. This paper pro poses a Sequence Random Network (SRN) to enhance the performance of DCNN. The output of DCNN is one-dimensional features. This one-dimensional feature abstractly represents image information, but it does not express well the detailed information of image. To address this issue, we use the proposed SRN which composed of BiLSTM and several Tanh-Dropout blocks (called BiLSTM-TDN), to further process DCNN one-dimensional features for highlighting the detail information of image. After the feature transform by BiLSTM-TDN, the recognition performance has been greatly improved. We conducted the experiments on six fine-grained image datasets. Except for FGVC-Aircraft, the accuracies of the proposed methods on the other datasets exceeded 99%. Experimental results show that BiLSTM-TDN is far superior to the existing state-of-the-art methods. In addition to DCNN, BiLSTM-TDN can also be extended to other models, such as Transformer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا